首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The exothermic oxidation of 3-methylpyridine with hydrogen peroxide was analyzed by Reaction Calorimeter (RC1e) in semi-batch operation. Heat releasing rate and heat conversion were studied at different operating conditions, such as reaction temperature, feeding rate, the amount of catalyst and so on. The thermal hazard assessment of the oxidation was derived from the calorimetric data, such as adiabatic temperature rise (ΔTad) and the maximum temperature of synthesis reaction (MTSR) in out of control conditions. Along with thermal decomposition of the product, the possibility of secondary decomposition under runaway conditions was analyzed by time to maximum rate (TMRad). Also, risk matrix was used to assess the risk of the reaction. Results indicated that with the increase of the reaction temperature, the reaction heat release rate increased, while reaction time and exotherm decreased. With the increase of feeding time, heat releasing rate decreased, but reaction time and exotherm increased. With the amount of the catalyst increased, heat releasing rate increased, reaction time decreased and exothermic heat increased. The risk matrix showed that when the reaction temperature was 70 °C, feeding time was 1 h, and the amount of catalyst was 10 g and 15 g, respectively, the reaction risk was high and must be reduced.  相似文献   

2.
3.
The bulk polymerization of methyl methacrylate (MMA) is of great importance in chemical industry, but the polymerization process is highly hazardous, and few reports have focused on the effect of initiators on its thermal hazards. In this work, to thoroughly explore the thermal hazard characteristics, the runaway behavior of MMA bulk polymerization is investigated by a combination of thermodynamics experimental and kinetics theoretical methods. The results indicate that the presence of initiator exhibits an undesirable thermal hazard to the MMA bulk polymerization, and its exothermic behavior is also greatly influenced by the type and concentration of initiator. For azobisisoheptanenitrile (ABVN), azodiisobutyronitrile (AIBN) and dibenzoyl peroxide (BPO) initiators as examples, the AIBN-initiated reaction has the shortest adiabatic induction period (39.51 min), whereas the BPO-initiated polymerization exhibits the strongest maximum temperature-rising rate and maximum pressure-rising rate. Under adiabatic runaway, the temperature and pressure change significantly with increasing AIBN concentration, revealing a great potential risk of thermal runaway. Kinetic parameters are calculated to further understand the thermal runaway mechanisms, showing a strong agreement with the adiabatic experimental data. Finally, based on the cooling failure scenario, severity grading is determined by the evaluation criteria. The current work provides extensive data as a reference and guidance for the process design and optimization of MMA bulk polymerization from the perspective of safety.  相似文献   

4.
The pure decomposition behavior of 2,2′-azobis (isobutyronitrile) (AIBN) and its physical phase transformation were examined and discussed. The thermal decomposition of this self-reactive azo compound was explored using differential scanning calorimetry (DSC) to elucidate the stages in the progress of this chemical reaction. DSC was used to predict the kinetic and process safety parameters, such as self-accelerating decomposition temperature (SADT), time to maximum reaction rate under adiabatic conditions (TMRad), and apparent activation energy (Ea), under isothermal and adiabatic conditions with thermal analysis models. Moreover, vent sizing package 2 (VSP2) was applied to examine the runaway reaction combined with simulation and experiments for thermal hazard assessment of AIBN. A thorough understanding of this reaction process can identify AIBN as a hazardous and vulnerable chemical during upset situations. The sublimation and melting of AIBN near its apparent onset decomposition temperature contributed to the initial steps of the reaction and explained the exothermic attributes of the peaks observed in the calorimetric investigation.  相似文献   

5.
Styrene is a reactive monomer commonly used to produce polystyrene and other copolymers. Unintended thermal runaway polymerization reactions of styrene keep reoccurring and have led to catastrophic consequences. One of the possible causes of these runaway incidents involves the contamination of the styrene monomer by incompatible species, which was not adequately investigated and documented. This study focuses on the quantification of thermal runaway hazards of styrene in contact with a series of contamination substances by adopting calorimetric analysis. Both Differential Scanning Calorimeter (DSC) and Advanced Reactive System Screening Tool (ARSST) were employed to examine the exothermic characteristics of styrene mixed with contaminating substances at different concentration levels and mixing conditions. Key safety parameters of the exothermic reaction, such as the onset temperature, the overall heat release, the maximum self-heating rate, as well as the activation energy, were obtained. The results indicated that the thermal runaway polymerization of purified styrene was significantly altered by the presence of contaminant species. Water effectively retarded and quenched the runaway polymerization at a higher temperature range. Alkaline had no substantial effect on the thermal runaway characteristics. The presence of acid solution under both static contact and vigorous mixing condition significantly promoted the thermal polymerization of styrene. A trace amount of concentrated acid initiated violent exothermic activity even at room temperature; and the severity of the reaction was profoundly impacted by the mass-transfer. Our study demonstrates significant implications in the prevention of runaway incidents during transportation and storage of styrene.  相似文献   

6.
为了解决醋酸乙烯聚合反应失控所引起的超压问题,通过VSP2绝热量热仪研究了醋酸乙烯聚合反应的失控特性,并通过Leung's法对某醋酸乙烯聚合反应器的安全泄放面积进行了计算;然后,在其他条件不变的情况下,研究引发剂质量分数对失控特性和泄放面积的影响,结果表明,引发剂质量分数对反应总放热量的影响不大,体系绝热温升为105~115℃;但引发剂质量分数越大,失控反应的最大温升速率和最大压升速率越大。这是因为引发剂质量分数越大,在相同泄放压力和最大累积压力下,单位质量反应物的放热速率就越大,也就需要更大的泄放面积;最后,引入无量纲数W~*、G~*和A~*,拟合出它们与引发剂质量分数X*的关系式,结果表明,在研究范围内所需安全泄放面积随引发剂质量分数线性增大。  相似文献   

7.
N, N-Dinitroso pentamethylene tetramine, also known as H foaming agent, is a self-reactive chemical substance commonly used in the rubber industry. Decomposition, explosion and combustion may be caused by the presence of fire or high temperature. As a high-risk chemical that is strictly regulated in China, H foaming agent has ever triggered multiple accidents. During the study of the decomposition thermal process of H foaming agent, it was found that the presence of moisture content at different levels had a significant effect on its thermal stability. The thermal characteristics of H foaming agent under different moisture contents was studied through the test means such as adiabatic calorimetry and high-pressure differential scanning calorimetry. Through isothermal calorimetry experiment, it was found that the decomposition of H foaming agent had obvious auto-catalytic characteristics. In the moisture content within the range of 0–40%, with the increase of moisture content, the initial exothermic temperature Tonset of the mixture system of H foaming agent and water decreased, while the time from initial heat release to rapid temperature rise of the reaction system (induction period) was gradually prolonged, and the temperature increment of the reaction system was increased gradually. As the proportion of moisture content in the system increased, the adiabatic temperature rise ΔTad of the mixture system of H foaming agent and water gradually decreased, meanwhile the time to maximum rate under adiabatic condition (TMRad) gradually decreased. The research results have guiding significance for finding the reasonable moisture content of H foaming agent in the drying process and determining the upper temperature limit during storage and transportation.  相似文献   

8.
9.
As a commonly used initiator for polyethylene, tert-butyl peroxide 3,5,5-trimethylhexanoate (TBPTMH), with the molecular formula of C13H26O3, is more likely to decompose and cause fires and explosions. Understanding the thermal risks of TBPTMH mixed with common metal ions, potentially in containers and pipes, is important. In this work, by using differential scanning calorimetry (DSC) and Phi-Tec adiabatic calorimetry, the effects of CuCl2, FeCl3, CuBr2, and FeBr3 on the thermal decomposition of TBPTMH were investigated. Adiabatic kinetic analysis was performed and the apparent activation energy (Ea) was calculated by thermodynamic analysis. Time to maximum rise under adiabatic conditions (TMRad) and the self-accelerating decomposition temperature (SADT) under different packing qualities were reckoned. It was found that the thermal risk of TBPTMH was increased while mixing these metal ions, especially CuBr2. To ensure the safety of the substance in process industry, the temperature of TBPTMH in the presence of metal should be governed below 39.48 °C. This work was expected to provide some guidance for improving the process safety of TBPTMH.  相似文献   

10.
Methyl ethyl ketone (MEK) oxidation via H2O2 with tungsten-based polyoxometalate catalysts has gained much attention with an ever-growing body of knowledge focusing on the development of environmentally benign processes in chemical industry. In this study, two calorimetry techniques, differential scanning calorimetry (DSC) and Phi-TEC II adiabatic calorimetry, were employed to analyze the thermal hazards associated with the 2-butanol oxidation reaction system. Hydrogen peroxide was the oxidant and a tungsten-based polyoxometalate as the catalyst. Gas chromatography-mass spectrometry was used for identification of the organic products. Important thermal kinetic data were obtained including “onset” temperature, heat of reaction, adiabatic temperature rise and self-heat rate. From DSC results, three exothermic peaks were detected with a total heat generation of approximately 1.26 kJ/g sufficiently to induce a thermal runaway. Possible reaction pathway for three stages were proposed based on both DSC and GC-MS results. One exotherm was detected by Phi-TEC II calorimeter and the pressure versus temperature profile together with the DSC and GC-MS data demonstrate the complexity of 2-butanol reaction system under both thermal screening and adiabatic conditions.  相似文献   

11.
With the continuous development of battery technology, there are new research investments in materials of various parts. In the field of electrolytes, ionic liquids (IL) are considered to be excellent electrolytes and have been widely studied in distinct energy fields. However, it is necessary to pay attention to the safety characteristics of ionic liquids at high temperature due to the application of energy, but there is little research on the reaction and kinetics of ionic liquids. To ensure the safety of ionic liquids, such as high temperature, the common ionic liquid 1-Ethyl-3-methylimidazolium nitrate ([Emim] NO3) was selected for analysis. The exothermic mode is obtained from the data of differential scanning calorimetry. The basic reaction parameters of [Emim] NO3 were determined with thermodynamic equation simulation. For ionic liquids in the actual situation, consider adding a heat balance model to estimate its temperature change pattern and find out the hazard temperature and related safety parameters. Temperature changes were estimated by constructing 25.0 g and 50.0 g packages to simulate material reactions and heat transfer in the external environment. The results showed that [Emim] NO3 had shorter TMRad and TCL (<1 day) when the temperature was above 180 °C.  相似文献   

12.
Liquid organic peroxides, such as tert-butyl peroxybenzoate (TBPB), have been widely employed in the petrifaction industry as a polymerization formation agent. This study investigated the thermokinetic parameters of TBPB by isothermal kinetic algorithms and non-isothermal kinetic equations, using thermal activity monitor III (TAM III) and differential scanning calorimetry (DSC), respectively. Simulations of 0.5 L, 25 kg, 55 gallon, and 400 kg reactors in liquid thermal explosion models were performed and compared to the results in the literature. A green thermal analysis was developed for a reactor containing TBPB to prevent pollution and reduce the energy consumption by thermal decomposition. It is based on the thermal hazard properties, such as the heat of decomposition (ΔHd), activation energy (Ea), self-accelerating decomposition temperature (SADT), control temperature (CT), emergency temperature (ET), and critical temperature (TCR). From the experimental results, the optimal conditions to avoid violent runaway reactions during the storage and transportation of TBPB were determined.  相似文献   

13.
Analytical reagents identify and manage metal pollution, a major environmental issue. Regrettably, these compounds' safety concerns, especially when heated, have been neglected. This research examines the thermal hazard of the extremely reactive analytical reagent styphnic acid. Differential scanning calorimetry, thermogravimetric analysis, and accelerating rate calorimetry examined styphnic acid's thermodynamics. Thermogravimetric analysis showed weight loss reactions starting at 127 °C and peaking at 208 °C. Differential scanning calorimetry showed an endothermic peak at 176 °C. The accelerating rate calorimetry test showed that styphnic acid self-accelerates at 237 °C after 196.5 °C. Kissinger, Ozawa-Flynn-Wall, and Kissinger-Akahira-Sunose thermokinetic models calculated apparent activation energy from 131.677 to 155.718 kJ/mol. A nonlinear regression analysis showed that styphnic acid undergoes a two-step autocatalytic reaction during heat degradation. Thermal safety was assessed by measuring time to conversion limit, maximum rate, total energy release, self-accelerating decomposition temperature, and adiabatic temperature rise. Styphnic acid is less stable at higher temperatures and its thermal hazards depend on heating rate. The computed SADT was 109.04 °C, with alarm and control temperatures of 104.04 and 99.04 °C, respectively. The risk matrix analysis based on Tad and TMRad suggests reducing thermal instability. This study on styphnic acid's thermal risks and safe storage and transit during analytical applications is beneficial.  相似文献   

14.
Thermal degradation of triacetone triperoxide (TATP) was studied using differential scanning calorimetry (DSC) and gas chromatography/mass spectrometry (GC/MS). TATP, a potential explosive material, is powerful organic peroxide (OP) that can be synthesized by available chemicals, such as acetone and hydrogen peroxide in the laboratory or industries. The thermokinetic parameters, such as exothermic onset temperature (T0) and heat of decomposition (ΔHd), were determined by DSC tests. The gas products from thermal degradation of TATP were identified using GC/MS technique.In this study, H2O2 was mixed with propanone (acetone) and H2SO4 catalysis that produced TATP. The T0 of TATP was determined to be 40 °C and Ea was calculated to be 65 kJ/mol. A thermal decomposition peak of H2O2 was analyzed by DSC and two thermal decomposition peaks of H2O2/propanone were determined. Therefore, H2O2/propanone mixture was applied to mix acid that was discovered a thermal decomposition peak (as TATP) in this study. According to risk assessment and analysis methodologies, risk assessment of TATP for the environmental and human safety issue was evaluated as 2-level of hazard probability rating (P) and 6-level of severity of consequences ratings (S). Therefore, the result of risk assessment is 12-point and was evaluated as “Undesirable” that should be enforced the effect of control method to reduce the risk.  相似文献   

15.
The procedure of phenol–formaldehyde polymerization is a rather important and complicated reaction in the chemical industry. This exothermic polymeric reaction releases a huge amount of heat. The high amount of energy accumulated and increasing temperature in this reaction process always lead to runaway reaction and a hazard situation owing to the high released heat and improper operation. In this investigation, we used sodium hydroxide as alkali–catalyst in the phenol–formaldehyde polymerization and estimated the reaction kinetics parameters to evaluate the thermal hazard conditions. The critical temperatures and stable criteria of the runaway reaction in this exothermic polymerization were evaluated. This technique is important and useful for safe operation in the phenol–formaldehyde polymerization process.  相似文献   

16.
The potentially explosive reaction of hydrogen peroxide (H2O2) and copper chloride (CuCl2) was investigated. Pressure tests revealed that the reaction was strongly temperature - dependent and can easily undergo runaway reaction. Nevertheless, there was only a slight pressure increase at the low temperatures studied or when using low concentrations of CuCl2. Under the conditions generating the slight pressure increase, hypochlorite anions (ClO) are generated and the acidity increases. As the reaction reaches completion, ClO disappears, and the acidity decreases. Interestingly, the addition of phosphate buffer to maintain the weakly acid conditions led to a runaway reaction, and the use of basic ClO promoted the exothermic reaction. Based on the results, acidity has a strong impact on the reaction behaviour.  相似文献   

17.
The runaway scenario can serve as a basis for the assessment of thermal process risks. In this context, the time to maximum rate (TMRad), i.e., the time between cooling failure and thermal explosion, can be a measure of the time in which safety measures must be taken. This paper highlights the discussion of TMRad by presenting the catalytic decomposition of hydrogen peroxide with potassium iodide. The experimental procedure is easily practicable and imposing for the students. An overview of the theoretical background is given before presenting the experiment.  相似文献   

18.
Reaction thermal runaway is one of the most important reasons leading to chemical accidents. With the rapid development of the chemical industry in the world, especially the fine chemical industry, various safety accidents also occur frequently. Therefore, it is necessary to study the exothermic behavior of the reaction process. In this study, reaction calorimeter was used to study the exothermic phenomena during the chlorination reaction and amination reaction. Differential scanning calorimetry was performed on the reactants, and thermogravimetric experiments were performed on the products. In addition, adiabatic experiment was performed to study the thermal runaway behavior of amination products under adiabatic conditions. The results showed that the target reactions generated a large amount of heat in the initial stage. The maximum temperature of amination reaction is higher than the initial decomposition temperature of the amination product under adiabatic condition. The pyrolysis of amination product was divided into three stages. The product had a high apparent activation energy at the beginning of decomposition, and the apparent activation energy decreased as the decomposition progressed.  相似文献   

19.
Thermal analysis by differential scanning calorimetry and thermogravimetric/differential thermal analysis mass spectrometry, adiabatic calorimetry, a gram-scale heating test, and infrared spectroscopy were performed to evaluate the thermal hazards of diphenylmethane diisocyanate (MDI) and prove the occurrence of a runaway reaction. The self-polymerization of MDI was found to occur at about 340 °C under rapid heating conditions. Carbon dioxide was eliminated and heat was generated to allow polymerization. Under adiabatic and closed conditions, the runaway reaction of MDI can begin at least from 220 °C. Besides it is highly probable that the runaway reaction of MDI can begin from a lower temperature in an actual process scale. More heat was generated than in the previous case and the pressure rose rapidly. A closed 2-mm-thick glass vessel exploded because of the runaway reaction of MDI even if the temperature was lower than 300 °C. Therefore, MDI could cause fatal runaway reactions below 300 °C, where MDI had been assumed to self-polymerize by eliminating carbon dioxide previously.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号