首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal runaway can occur during the styrene bulk polymerization process because of easily formed local hotspots resulting from the high viscosity of reactants and the difficulty of heat dissipation. To obtain the thermal hazard characteristics, the polymerization behavior of styrene was investigated using differential scanning calorimetry (DSC) at a scanning rate of β = 2 °C/min. Experimental results showed that the exothermic peaks obtained for heat initiation were different from those obtained when initiator was added. The exothermic peak changed from one to two after the initiator was added. The exothermic onset temperature (T0) was also reduced. Phi-tech II was utilized to study the bulk polymerization of styrene in an adiabatic environment. The adiabatic temperature rise (ΔTad), starting temperature of uncontrolled polymerization (Tstar), maximum temperature (Tend), and heat of polymerization (ΔH) under different conditions were acquired. When the dose of the additive was increased, the starting temperature of uncontrolled polymerization (Tstar) decreased and the adiabatic temperature rise (ΔTad) increased gradually. Severity grading was performed based on the severity evaluation criteria of runaway reaction. The results can help designers decide whether it is necessary to take certain measures to reduce risk.  相似文献   

2.
The application of construction polymers in engineering and alternative materials has always occupied a place in the market. In the production process of polymer resins, initiators can be used to lower the polymerization reaction energy threshold, which can improve reaction efficiency and reduce energy loss. However, as a commonly used energetic substance in the polymerization process, azos have caused related process hazards due to their exothermic characteristics. Because of this, it is essential to examine and analyze the thermal hazard characteristics of emerging azo substances, such as 2-cyanopropan-2-imemicarbazide (CABN). Although previous literature performs the calculation on related thermal hazard parameters of CABN, there is still exists a void for discussion in estimating the reaction model to avoid analogous hazards and enhance the existing thermal analysis. Based on the past literature, the reaction model is improved with thermogravimetric analysis as evidence. The revised thermal hazard parameters are calculated as the basis of control and mitigation measures, the kinetic model is used to estimate the modified safety parameters, and in the judgment of the runaway reaction, the critical temperature of the runaway is found by analyzing the influence of slight changes in ambient temperature on the reaction temperature. The results show that the critical temperature that causes CABN to enter the runaway reaction is delayed, and the hazard is lower than in the storage situation. Therefore, the thermal hazard to CABN mainly focuses on the safety environment and measures during storage.  相似文献   

3.
The bulk polymerization of methyl methacrylate (MMA) is of great importance in chemical industry, but the polymerization process is highly hazardous, and few reports have focused on the effect of initiators on its thermal hazards. In this work, to thoroughly explore the thermal hazard characteristics, the runaway behavior of MMA bulk polymerization is investigated by a combination of thermodynamics experimental and kinetics theoretical methods. The results indicate that the presence of initiator exhibits an undesirable thermal hazard to the MMA bulk polymerization, and its exothermic behavior is also greatly influenced by the type and concentration of initiator. For azobisisoheptanenitrile (ABVN), azodiisobutyronitrile (AIBN) and dibenzoyl peroxide (BPO) initiators as examples, the AIBN-initiated reaction has the shortest adiabatic induction period (39.51 min), whereas the BPO-initiated polymerization exhibits the strongest maximum temperature-rising rate and maximum pressure-rising rate. Under adiabatic runaway, the temperature and pressure change significantly with increasing AIBN concentration, revealing a great potential risk of thermal runaway. Kinetic parameters are calculated to further understand the thermal runaway mechanisms, showing a strong agreement with the adiabatic experimental data. Finally, based on the cooling failure scenario, severity grading is determined by the evaluation criteria. The current work provides extensive data as a reference and guidance for the process design and optimization of MMA bulk polymerization from the perspective of safety.  相似文献   

4.
The procedure of phenol–formaldehyde polymerization is a rather important and complicated reaction in the chemical industry. This exothermic polymeric reaction releases a huge amount of heat. The high amount of energy accumulated and increasing temperature in this reaction process always lead to runaway reaction and a hazard situation owing to the high released heat and improper operation. In this investigation, we used sodium hydroxide as alkali–catalyst in the phenol–formaldehyde polymerization and estimated the reaction kinetics parameters to evaluate the thermal hazard conditions. The critical temperatures and stable criteria of the runaway reaction in this exothermic polymerization were evaluated. This technique is important and useful for safe operation in the phenol–formaldehyde polymerization process.  相似文献   

5.
重大化工事故往往是由多米诺效应引发的一连串故障而导致的。为实现苯乙烯聚合反应的本质安全,采用本质安全设计原则,设计了T型微反应器以替换传统釜式反应器。先通过计算流体力学(CFD)方法建立了三维稳态模型,再通过UDF(User Defined Functions)添加组分输运方程源项和能量方程源项,对苯乙烯自由基聚合反应进行了数值模拟,研究在微尺度条件下,反应温度、混合反应管道长度及形状对反应结果的影响。结果表明:由于微反应器可提高传热传质效率,在一定范围内反应温度可以控制在3 K以内;反应管道由0.15 m增长至1.5 m后,转化率可提高2倍左右;0.15 m直管形状改进为螺旋状后,转化率可至少提升4%。  相似文献   

6.
讨论化学放热系统的热稳定性和临界条件,用化学反应物无消耗的假设推导化学放热系统热失控(热爆炸)时的动力学参数临界值,得到热失控的判据、临界点火温度和熄火温度。提出用系统安全指数概念来评价放热反应系统发生热爆炸的潜在危险性,分析化学放热系统的平衡域。用硝酸甲酯分解爆炸实例,说明如何利用安全指数对具有热爆炸可能性的系统的潜在危险性进行定量评价,其预测结果与实验结果一致。  相似文献   

7.
为了解决醋酸乙烯聚合反应失控所引起的超压问题,通过VSP2绝热量热仪研究了醋酸乙烯聚合反应的失控特性,并通过Leung's法对某醋酸乙烯聚合反应器的安全泄放面积进行了计算;然后,在其他条件不变的情况下,研究引发剂质量分数对失控特性和泄放面积的影响,结果表明,引发剂质量分数对反应总放热量的影响不大,体系绝热温升为105~115℃;但引发剂质量分数越大,失控反应的最大温升速率和最大压升速率越大。这是因为引发剂质量分数越大,在相同泄放压力和最大累积压力下,单位质量反应物的放热速率就越大,也就需要更大的泄放面积;最后,引入无量纲数W~*、G~*和A~*,拟合出它们与引发剂质量分数X*的关系式,结果表明,在研究范围内所需安全泄放面积随引发剂质量分数线性增大。  相似文献   

8.
The polymerization reaction can lower the threshold of the required energy by the initiator to improve the efficiency of the overall process reaction. Emerging polymerization initiators are also a major focus of process improvement and technological progress. Azo compounds (azos), which used in dyeing applications, are subsequently used in polymerization reactions due to their highly exothermic reaction characteristics. Although higher heat release can promote polymerization and modify the product, heat generation may also cause process hazards.These thermal hazard parameters were studied by selecting dimethyl 2,2′-azobis(2,4-dimethylvaleronitrile) (ABVN), 2,2′-azobis(2-methyl propionate) (AIBME), 2,2′-azobis(2-methylpropionamide) dihydrochloride (AIBA), and 2,2′-azobis(isobutyronitrile) (AIBN), which are common azo initiators at present. Thermal hazards are closely related to the reaction kinetics of the substance itself. The form of the reaction, the apparent activation energy and the thermodynamic parameters of the exothermic mode were also obtained.Kinetic analysis of the actual process using the experimental data of the isothermal calorimetry model is rarely used in the evaluation of related thermal hazard characteristics. The simulation results revealed the kinetic azo models and were further applied to calculate the runaway situations of azo under specific boundary conditions.  相似文献   

9.
Primary lithium batteries contain hazardous materials such as lithium metal and flammable solvents, which can lead to exothermic activity and runaway reactions above a defined temperature. Lithium-ion batteries operating outside the safe envelope can also lead to formation of lithium metal and thermal runaway. Despite protection by battery safety mechanisms, fires originating from primary lithium and lithium-ion batteries are a relatively frequent occurrence.This paper reviews the hazards associated with primary lithium and lithium-ion cells, with an emphasis on the role played by chemistry at individual cell level. Safety mechanisms to prevent the occurrence and limit the consequences of incidents are reviewed, together with safety tests to monitor compliance with battery safety regulations and standards. Incident information from news accounts and open literature sources are reviewed to extract causal information.It is concluded that the potential severity of incidents during storage, transport and recycling of waste batteries can be significantly higher than in end-use applications. Safe storage, packaging and labelling practices, as well as communication among the parties involved, are essential to ensure safety across the battery lifecycle. It is recommended that a database of lithium battery incidents would be valuable to improve the evidence base for informing accident prevention measures.  相似文献   

10.
A study of runaway incidents involving thermal chemical reactions in the UK over the past 25 years (1988–2013) has been carried out. The objective of this study is to determine possible causes of thermal runaway incidents. A statistical analysis of the underlying problems that led to thermal runaway incidents has been provided. A comparison of the current study on thermal runaway incidents with those identified prior to 1988 has been carried out. This study clearly shows that lessons have not been learnt from thermal runaway incidents caused by operator errors, management failures and lack of organised operating procedures. These factors have been the possible causes of about 77% of all the thermal runaway incidents analysed in this study. The number of fatalities and injuries as a result of thermal runaway incidents has increased by ∼325% and ∼279%, respectively, in the last 25 years even though the number of incidents was significantly less. On the basis of this analysis, several recommendations have been proposed that could help to minimise the risks associated with any thermal runaway incidents in the future.  相似文献   

11.
Thermal safety and risk of accidents are still challenging topics in the case of batch reactors carrying exothermic reactions. In the present paper, the authors develop an integrated framework focusing on defining the governing parameters for the thermal runaway and evaluating the subsequent risk of accident. A relevant set of criteria are identified in order to find the prior conditions for a thermal runaway: failure of the cooling system, critical temperature threshold, successive derivatives of the temperature (first and second namely) vs. time and no detection in due time (reaction time) of the runaway initiation. For illustrative purposes, the synthesis of peracetic acid (PAA) with hydrogen peroxide (HP) and acetic acid (AA) is considered as case study. The critical and threshold values for the runaway accident are identified for selected sets of input data. Under the conditional probability of prior cooling system failure, Monte Carlo simulations are performed in order to estimate the risk of thermal runaway accident in batch reactors. It becomes then possible to predict the ratio of reactors, within an industrial plant, potentially subject to thermal runaway accident.  相似文献   

12.
Reaction thermal runaway is one of the most important reasons leading to chemical accidents. With the rapid development of the chemical industry in the world, especially the fine chemical industry, various safety accidents also occur frequently. Therefore, it is necessary to study the exothermic behavior of the reaction process. In this study, reaction calorimeter was used to study the exothermic phenomena during the chlorination reaction and amination reaction. Differential scanning calorimetry was performed on the reactants, and thermogravimetric experiments were performed on the products. In addition, adiabatic experiment was performed to study the thermal runaway behavior of amination products under adiabatic conditions. The results showed that the target reactions generated a large amount of heat in the initial stage. The maximum temperature of amination reaction is higher than the initial decomposition temperature of the amination product under adiabatic condition. The pyrolysis of amination product was divided into three stages. The product had a high apparent activation energy at the beginning of decomposition, and the apparent activation energy decreased as the decomposition progressed.  相似文献   

13.
Many studies have been performed to clarify the basic thermal runaway hazards and kinetics of cumene hydroperoxide (CHP) decomposition. However, materials that are incompatible with CHP have not been clearly identified. Alkaline solutions have been used as a catalyst to form dimethylphenyl carbinol (DMPC) and dicumyl peroxide (DCPO); however, these solutions also affect the reaction and storage temperature of CHP. In this study, thermal calorimeters, differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), were used to compare the effects of various bases on the decomposition of CHP in cumene. Specifically, the exothermic onset temperature, change in pressure over time, self-heating rate and heat of decomposition were evaluated. Moreover, to appraise the degree of hazard associated with the use of CHP, the compatibility of CHP with various substances was analyzed, and a risk matrix for thermal runaway reactions was obtained. The results of the present study could be used to design safety procedures for the production of CHP and its derivatives.  相似文献   

14.
In 2011, a large petrochemical complex in Taiwan incurred several fire and explosion accidents, which had considerable negative impact for the industry on both environmental and safety issues. Reactive substances are widely used in many chemical industrial fields as an initiator, hardeners, or cross-linking agents of radical polymerization process with unsaturated monomer. However, the unpredictable factors during the process having risk to runaway reaction, thermal explosion, fire, and exposure to harmful toxic chemicals release due to the huge heat and gas products by thermal decomposition could not be removed from the process. This study used differential technology of thermal analysis to characterize the inherent hazard behaviors of azo compounds and organic peroxides in the process, to seek the elimination of the source of the harmful effects and achieve the best process safety practices with zero disaster and sound business continuity plan.  相似文献   

15.
Vinyl acetate monomer (VAM) is widely used as a chemical intermediate producing a variety of copolymer products. Besides, VAM has the tendency to readily decompose into free radicals and ions that initiates the self-sustaining polymerization reaction. The non-isothermal experiments of VAM were performed using differential scanning calorimetry (DSC), and the calculations of the kinetic parameters from temperature-programmed DSC curves have been evaluated by the isoconversional method. The thermal analysis of VAM was proceeded using the advanced thermal analysis software (AKTS) to figure out the time to maximum rate (TMR) and self-accelerating decomposition temperature (SADT) for a proactive safety design of VAM. Subsequently, the kinetic model is used to predict the potential thermal runaway in the VAM-PVAc polymerizing process.  相似文献   

16.
为研究21700和18650新旧2型多用途锂离子电池在航空运输低压环境下的热失控特性差异,采用动压变温实验舱搭建实验平台开展实验。将实验环境压力设定为飞机巡航时的环境压力30 kPa,对比常压101 kPa,使用外部热源加热的方式触发锂电池热失控,利用热传播引发相邻电池热失控,分别从热失控温度变化特性、热释放速率和热解气体组分浓度变化进行分析。研究结果表明:能量密度更高的21700电池热失控峰值温度更高,高温危险性要高于18650电池,但触发热失控所需的热量更多,电池间热传播时间会延长;低压环境有利于降低锂电池热失控燃爆峰值温度,减小燃爆热释放速率,但会产生更多CxHy和CO等具有燃爆性的热解气体,可能会在有限空间内与氧气混合引起二次燃爆。  相似文献   

17.
Thermal analysis by differential scanning calorimetry and thermogravimetric/differential thermal analysis mass spectrometry, adiabatic calorimetry, a gram-scale heating test, and infrared spectroscopy were performed to evaluate the thermal hazards of diphenylmethane diisocyanate (MDI) and prove the occurrence of a runaway reaction. The self-polymerization of MDI was found to occur at about 340 °C under rapid heating conditions. Carbon dioxide was eliminated and heat was generated to allow polymerization. Under adiabatic and closed conditions, the runaway reaction of MDI can begin at least from 220 °C. Besides it is highly probable that the runaway reaction of MDI can begin from a lower temperature in an actual process scale. More heat was generated than in the previous case and the pressure rose rapidly. A closed 2-mm-thick glass vessel exploded because of the runaway reaction of MDI even if the temperature was lower than 300 °C. Therefore, MDI could cause fatal runaway reactions below 300 °C, where MDI had been assumed to self-polymerize by eliminating carbon dioxide previously.  相似文献   

18.
Reaction inhibition was adopted as a method to halt runaway phenomena during polymerization experiments. Use of reaction calorimetry coupled with a particular system for early detection of the onset of runaway (early warning detection system) has allowed to investigate the behaviour of two substances that can influence the reaction rate: hydroquinone and 1,4-benzoquinone. The process studied was the free-radical polymerization of methylmethacrylate carried out under batch conditions in bulk or in emulsion. The results show that hydroquinone and 1,4-benzoquinone behave differently: the first is an inhibitor because it completely stops the process; the second behaves as a retarder and could be used industrially to control the process and keep the reactor temperature within safe limits.  相似文献   

19.
Ketone peroxides are capable of spontaneous decomposition, and violent decomposition occurs if they contact with strong mineral acids. In this paper, an adiabatic method is used to investigate the thermal hazard of Methyl Ethyl Ketone Peroxide (MEKPO) and mixture of MEKPO with sulfuric acid in order to understand the effect of the contamination of sulfuric acid on the thermal stability of MEKPO. On the basis of experimental results, kinetic parameters of exothermic reaction of MEKPO and mixture of MEKPO with 1% sulfuric acid are estimated, and thermal hazard parameters, such as the initial exothermic temperature and the adiabatic temperature rise are obtained under real adiabatic condition. It can be seen from the results that the thermal hazard of MEKPO with sulfuric acid is more remarkable than that of MEKPO itself.  相似文献   

20.
Thermal runaway was studied in a continuous tubular pilot reactor under steady-state regime. Different accident scenarii were conducted by making some errors on reactant concentrations and/or temperature feed. To prevent thermal runaway, control by direct contact by solvent injection was used at different reactor locations. This injection allowed controlling the maximum reaction temperature. A simplified analytical method to estimate the maximum reaction temperature along the reactor was used.Benefit of this control method was the diminution of computational time. Furthermore, by injecting solvent to control maximum reaction temperature, there is no need to shut down the unit. The control method was validated experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号