首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The present paper deals with accidents risk in batch reactors. It identifies the conditions for the occurrence of a thermal runaway and develops a probabilistic approach to assess the relevant risk. It investigates also the conditions for optimal synthesis of peracetic acid (PAA) with hydrogen peroxide (HP) and acetic acid (AA). The kinetic model of reversible reaction and side reaction of PAA synthesis is used to predict reactor temperature and molar ratio of PAA by ASPEN PLUS software. A sensitivity analysis is performed under different conditions such as constant temperature or adiabatic process with different concentrations of sulfuric acid. Assuming a prior cooling system failure, the conditions for reaction runaway triggering a thermal accident are identified in the case of PAA synthesis. Monte Carlo simulations are used in order to calculate the conditional probability of accident and optimize the synthesis of PAA.  相似文献   

2.
Nowadays many chemical industries are SMEs where multi-purpose batch or semi-batch reactors are commonly used. Vent sizing for realistic runaway scenario is not an easy task for such enterprises since they have usually few resources and use multi-purpose reactors with fast process turnovers. As a consequence these batch and semi-batch reactors are usually equipped with emergency relief systems sized once forever when the reactor is designed. This can lead to a large underestimation of the vent area in case of runaway reactions occurring when processes different from the ones considered for originally sizing the vent are carried out.The approach proposed in this work aims to identify the maximum reactor load leading to safe conditions even in case of runaway phenomena to be handled with the emergency relief system already installed (or even with a smaller vent area). This approach allows avoiding the change of the emergency relief system with a larger vent area (as required every time a new more hazardous process has to be carried out on existing reactors) at the price of lower plant productivity.  相似文献   

3.
某恒温间歇反应的热失控研究   总被引:1,自引:0,他引:1  
为得到某恒温间歇反应冷却系统临界温度Tc并评估该反应体系的热危险性,基于间歇反应体系热参数的敏感性,探讨数值计算方法和选用4种反应热失控临界判据得到的不同Tc值。结果表明,数值计算方法得到了反应体系的Tc为31.7℃,Semenov判据、Sliding判据、Da/St判据得到的Tc值分别为10℃,17℃和27℃;无量纲绝热温升B给出的结论是,在允许的工艺温度范围内,该反应对任意的冷却系统温度都处于难以控制状态。数值计算方法及各判据得到的Tc的较大差异性说明各方法均有一定的局限性。在运用参数敏感性分析的基础上,结合风险矩阵图方法对系统冷却失效的热危险性进行评估,得到不同Tc下风险可接受、有条件接受及不可接受对应的参数范围的物料累积度Xac与最大反应速率到达时间θ间的关系。  相似文献   

4.
5.
The application of construction polymers in engineering and alternative materials has always occupied a place in the market. In the production process of polymer resins, initiators can be used to lower the polymerization reaction energy threshold, which can improve reaction efficiency and reduce energy loss. However, as a commonly used energetic substance in the polymerization process, azos have caused related process hazards due to their exothermic characteristics. Because of this, it is essential to examine and analyze the thermal hazard characteristics of emerging azo substances, such as 2-cyanopropan-2-imemicarbazide (CABN). Although previous literature performs the calculation on related thermal hazard parameters of CABN, there is still exists a void for discussion in estimating the reaction model to avoid analogous hazards and enhance the existing thermal analysis. Based on the past literature, the reaction model is improved with thermogravimetric analysis as evidence. The revised thermal hazard parameters are calculated as the basis of control and mitigation measures, the kinetic model is used to estimate the modified safety parameters, and in the judgment of the runaway reaction, the critical temperature of the runaway is found by analyzing the influence of slight changes in ambient temperature on the reaction temperature. The results show that the critical temperature that causes CABN to enter the runaway reaction is delayed, and the hazard is lower than in the storage situation. Therefore, the thermal hazard to CABN mainly focuses on the safety environment and measures during storage.  相似文献   

6.
The semi-batch reactors (SBRs) system, which is widely used in industrial processes, possesses an intrinsic parametric sensitivity, in which infinitesimal disturbances of input parameters can result in large variations in output variables. In this work, local parametric sensitivity analysis (PSA) was used to understand parameter variations and global PSA was conducted to examine the interaction of input parameters. The effects of these parameters on the output of the system model were analyzed based on the Monte Carlo method with Latin hypercube sampling and the extended Fourier amplitude sensitivity test model. The results showed that the evolution of thermal behaviors in SBRs were observed: marginal ignition; thermal runaway; and the quick onset, fair conversion, and smooth temperature profile. The threshold point of transition from marginal ignition to thermal runaway was at the maximal value of local sensitivity, for which the slope with respect to cooling temperature equaled zero. Moreover, the sequence of the global sensitivity of six common input parameters was computed and evaluated. The reliability of the numerical models was verified by using our previous experimental results of cyclohexanone peroxide reaction. This comprehensive sensitivity analysis could provide valuable operating information to improve chemical process safety.  相似文献   

7.
A systematic approach to the assessment of thermal risks linked with the performance of exothermal reactions at industrial scale was proposed a long time ago. The approach consisted of a runaway scenario starting from a cooling failure and a classification of these scenarios into criticality classes. In the mean time these tools became quite popular and many chemical companies use them. Recently, the international standard IEC 61511 required the use of protection systems with reliability depending on the risk level. Since the criticality classes were developed as a tool for the choice of risk reducing measures as a function of the criticality, it seems obvious that the criticality classes may be used in the context of the standard IEC 61511, which provides a relation between the risk level and the reliability of protection systems.Firstly, the runaway scenario and the criticality classes will be shortly described. Secondly, the assessment criteria for severity and probability of occurrence of a runaway scenario will be described together with the required data and their interpretation in terms of risk. Thirdly, the assessment procedure is exemplified for the different criticality classes. Finally, the design of protection measures against runaway and the required IPL and SIL are based on the risk assessment obtained from the criticality classes. This approach allows minimising the required data set for the safety assessment and for the definition of the protection system designed in order to avoid the development of the runaway.  相似文献   

8.
A general runaway criterion valid for single as well as for multiple reaction types, i.e. consecutive, parallel, equilibrium, and mixed kinetics reactions, and for several types of reactors, i.e. batch reactor (BR), semibatch reactor (SBR) and continuous stirred tank reactor (CSTR) has been developed. Furthermore, different types of operating conditions, i.e. isoperibolic and isothermal (control system), have been analysed. The criterion says that we are in a runaway situation when the divergence of the system becomes positive (div>0) on a segment of the reaction path. The results show that this is a general runaway criterion than can be used to calculate the runaway limits for chemical reactors. The runaway limits have been compared with previous criteria. A considerable advantage, over existing criteria, is that it can be calculated on-line using only temperature measurements and, hence, it constitutes the core of an early warning runaway detection system we are developing.  相似文献   

9.
The bulk polymerization of methyl methacrylate (MMA) is of great importance in chemical industry, but the polymerization process is highly hazardous, and few reports have focused on the effect of initiators on its thermal hazards. In this work, to thoroughly explore the thermal hazard characteristics, the runaway behavior of MMA bulk polymerization is investigated by a combination of thermodynamics experimental and kinetics theoretical methods. The results indicate that the presence of initiator exhibits an undesirable thermal hazard to the MMA bulk polymerization, and its exothermic behavior is also greatly influenced by the type and concentration of initiator. For azobisisoheptanenitrile (ABVN), azodiisobutyronitrile (AIBN) and dibenzoyl peroxide (BPO) initiators as examples, the AIBN-initiated reaction has the shortest adiabatic induction period (39.51 min), whereas the BPO-initiated polymerization exhibits the strongest maximum temperature-rising rate and maximum pressure-rising rate. Under adiabatic runaway, the temperature and pressure change significantly with increasing AIBN concentration, revealing a great potential risk of thermal runaway. Kinetic parameters are calculated to further understand the thermal runaway mechanisms, showing a strong agreement with the adiabatic experimental data. Finally, based on the cooling failure scenario, severity grading is determined by the evaluation criteria. The current work provides extensive data as a reference and guidance for the process design and optimization of MMA bulk polymerization from the perspective of safety.  相似文献   

10.
It is well-known that, for certain values of the operative parameters influencing the dynamic behavior of a chemical reactor, a phenomenon known as thermal runaway (that is, a loss of the reactor temperature control) may arise. Such a situation can be really dangerous because above a certain threshold temperature value unwanted side reactions or, worse, decompositions of the reacting mixture may be triggered evolving high amounts of flammable or toxic gases that can cause reactor pressurization and, eventually, its explosion. For this reason, since the beginning of the previous century a number of studies concerning the prediction of the so called runaway boundaries has been carried out. In this work, a modified version of the divergence criterion for runaway detection, originally developed by Zaldívar and co-workers, is presented. Such a modified divergence criterion is capable of treating whatever type of complex controlled reacting system (taking into account not only temperature control but also dosing strategies) and its reliability has been demonstrated for isoperibolic semibatch reactors using literature experimental data concerning the nitration of 4-Chlorobenzotrifluoride in mixed acids and the nitric acid oxidation of 2-octanol to 2-octanone and further carboxylic acids.  相似文献   

11.
苯和甲苯硝化及磺化反应热危险性分级研究   总被引:1,自引:1,他引:0  
首先介绍了化工工艺热安全性的内涵,并从反应过程热危险性分析的方法学出发,介绍间隙、半间歇化学反应工艺热危险性分级研究的总体思路及方法。然后,围绕甲苯和苯的硝化、磺化反应,用全自动反应量热仪(RC1e)和加速度量热仪(ARC)测定其反应过程的绝热温升(△Tad)、目标反应所能达到的最高温度(TM)、分解反应最大速率到达时间(θD)等参数。运用风险评价指数矩阵法(方法1)和基于失控过程温度参数的热危险评估法(方法2)分别对其硝化和磺化反应过程的热危险性进行了分级评估。结果表明,这两种方法具有良好的一致性;给定工艺条件下甲苯和苯的一段硝化反应过程的热危险度等级较低;而磺化反应的热危险较高。尽管这两种方法还有一定的局限性,但对于间歇、半间歇合成工艺的本质安全化设计、工艺热危险性的评估具有重要的参考价值和实用意义。  相似文献   

12.
A study of runaway incidents involving thermal chemical reactions in the UK over the past 25 years (1988–2013) has been carried out. The objective of this study is to determine possible causes of thermal runaway incidents. A statistical analysis of the underlying problems that led to thermal runaway incidents has been provided. A comparison of the current study on thermal runaway incidents with those identified prior to 1988 has been carried out. This study clearly shows that lessons have not been learnt from thermal runaway incidents caused by operator errors, management failures and lack of organised operating procedures. These factors have been the possible causes of about 77% of all the thermal runaway incidents analysed in this study. The number of fatalities and injuries as a result of thermal runaway incidents has increased by ∼325% and ∼279%, respectively, in the last 25 years even though the number of incidents was significantly less. On the basis of this analysis, several recommendations have been proposed that could help to minimise the risks associated with any thermal runaway incidents in the future.  相似文献   

13.
讨论化学放热系统的热稳定性和临界条件,用化学反应物无消耗的假设推导化学放热系统热失控(热爆炸)时的动力学参数临界值,得到热失控的判据、临界点火温度和熄火温度。提出用系统安全指数概念来评价放热反应系统发生热爆炸的潜在危险性,分析化学放热系统的平衡域。用硝酸甲酯分解爆炸实例,说明如何利用安全指数对具有热爆炸可能性的系统的潜在危险性进行定量评价,其预测结果与实验结果一致。  相似文献   

14.
Dynamic risk assessment using failure assessment and Bayesian theory   总被引:1,自引:0,他引:1  
To ensure the safety of a process system, engineers use different methods to identify the potential hazards that may cause severe consequences. One of the most popular methods used is quantitative risk assessment (QRA) which quantifies the risk associated with a particular process activity. One of QRA's major disadvantages is its inability to update risk during the life of a process. As the process operates, abnormal events will result in incidents and near misses. These events are often called accident precursors. A conventional QRA process is unable to use the accident precursor information to revise the risk profile. To overcome this, a methodology has been proposed based on the work of Meel and Seider (2006). Similar to Meel and Seider (2006) work, this methodology uses Bayesian theory to update the likelihood of the event occurrence and also failure probability of the safety system. In this paper the proposed methodology is outlined and its application is demonstrated using a simple case study. First, potential accident scenarios are identified and represented in terms of an event tree, next, using the event tree and available failure data end-state probabilities are estimated. Subsequently, using the available accident precursor data, safety system failure likelihood and event tree end-state probabilities are revised. The methodology has been simulated using deterministic (point value) as well as probabilistic approach. This Methodology is applied to a case study demonstrating a storage tank containing highly hazardous chemicals. The comparison between conventional QRA and the results from dynamic failure assessment approach shows the significant deviation in system failure frequency throughout the life time of the process unit.  相似文献   

15.
The runaway scenario can serve as a basis for the assessment of thermal process risks. In this context, the time to maximum rate (TMRad), i.e., the time between cooling failure and thermal explosion, can be a measure of the time in which safety measures must be taken. This paper highlights the discussion of TMRad by presenting the catalytic decomposition of hydrogen peroxide with potassium iodide. The experimental procedure is easily practicable and imposing for the students. An overview of the theoretical background is given before presenting the experiment.  相似文献   

16.
为研究城市燃气管网风险的动态性,针对传统风险分析方法的局限性,提出基于贝叶斯网络的燃气管网动态风险分析方法。构建燃气管网失效蝴蝶结模型并将其转化为贝叶斯网络模型;在事故发生状态下更新事件失效概率,识别出关键因素;根据异常事件数据和贝叶斯理论,对基本事件失效概率进行实时动态改变;随之更新管网失效及各后果发生的概率,从而实现管网的动态风险分析。研究结果表明:该方法克服了传统风险分析方法的不足,可动态反映燃气管网失效和事故后果发生概率随时间变化的特征,能够为城市地下燃气管网的风险分析与事故预防提供参考。  相似文献   

17.
Many studies have been performed to clarify the basic thermal runaway hazards and kinetics of cumene hydroperoxide (CHP) decomposition. However, materials that are incompatible with CHP have not been clearly identified. Alkaline solutions have been used as a catalyst to form dimethylphenyl carbinol (DMPC) and dicumyl peroxide (DCPO); however, these solutions also affect the reaction and storage temperature of CHP. In this study, thermal calorimeters, differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), were used to compare the effects of various bases on the decomposition of CHP in cumene. Specifically, the exothermic onset temperature, change in pressure over time, self-heating rate and heat of decomposition were evaluated. Moreover, to appraise the degree of hazard associated with the use of CHP, the compatibility of CHP with various substances was analyzed, and a risk matrix for thermal runaway reactions was obtained. The results of the present study could be used to design safety procedures for the production of CHP and its derivatives.  相似文献   

18.
The aim of this work was to characterize the methyl isocyanate hydrolysis reaction and to identify its operational criteria. The parametric sensitivity and dynamic stability methodologies were performed at the Bhopal disaster circumstances, over the relevant operating parameter space. Stable and unstable conditions, bifurcations points, turning points and oscillatory behavior were determined. The combined methodology give useful guidance on the operative conditions selection and the appropriate strategy to overcome hazardous situations. The obtained results demonstrated high sensitivity to small perturbations (thermal runaway) and prevalent oscillatory behavior. Moreover, the following critical parameters for the studied dynamic system were defined: the inverse residence time of 1.5700103 and the heat transfer coefficient of 752.394.  相似文献   

19.
Thermal runaway hazard assessment provides the basis for comparing the hazard levels of different chemical processes. To make an overall evaluation, hazard of materials and reactions should be considered. However, most existing methods didn't take the both into account simultaneously, which may lead the assessment to a deviation from the actual hazard. Therefore, an integrated approach called Inherent Thermal-runaway Hazard Index (ITHI) was developed in this paper. Similar to Dow Fire and Explosion Index(F&EI) function, thermal runaway hazard of chemical process in ITHI was the product of material factor (MF) and risk index (RI) of reaction. MF was an indicator of material thermal hazards, which can be determined by initial reaction temperature and maximum power density. RI, which was the product of probability and severity, indicated the risk of thermal runaway during the reaction stage. Time to maximum rate under adiabatic conditions and criticality classes of scenario were used to indicate the runaway probability of the chemical process. Adiabatic temperature rise and heat of the desired reaction and secondary reaction were used to determine the severity of runaway reaction. Finally, predefined hazard classification criteria was used to classify and interpret the results obtained by this method. Moreover, the method was validated by case studies.  相似文献   

20.
The critical diameter and critical thickness of two heterogeneous explosives were measured experimentally. By comparing these experimentally determined values of critical diameter and critical thickness, the role of front curvature in the failure of the detonation can be investigated. Current theories of detonation based on front curvature would predict the critical diameter should be twice the critical thickness. Experimentally, the expected two-to-one ratio was only validated for the case of a heterogeneous explosive with very fine scale heterogeneities. The ratios of critical diameter to critical thickness (for the two selected explosives) are also compared to previously measured values for homogeneous (liquid) explosives in order to contrast the dominant failure mechanism in these different explosives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号