首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Macroinvertebrates were examined on an impounded valley marsh in Stonington, Connecticut, that has changed from aTypha-dominated system to one with typical salt-marsh vegetation during 13 years following the reintroduction of tidal exchange. Animal populations on this restored impounded marsh were evaluated by comparing them with populations on a nearby unimpounded valley marsh of roughly the same size. Populations of the high marsh snail,Melampus bidentatus Say, were quantitatively sampled along transects that extended from the water-marsh edge to the upland; those of the ribbed mussel,Geukensia demissa Dillwyn, were sampled in low marsh areas on transects along the banks of creeks and mosquito ditches. The occurrence of other marsh invertebrates also was documented, but their abundance was not measured. The mean density ofMelampus was 332±39.6 SE/m2 on the restored impounded marsh and 712±56.0 SE/m2 on the unimpounded marsh. However, since snails were larger on the restored impounded marsh, the difference in snail biomass was less pronounced than the difference in snail density. MeanMelampus biomass was 4.96±0.52 SE g dry wt/m2 on the restored impounded marsh and 6.96±0.52 SE g dry wt/m2 on the unimpounded marsh. On the two marshes, snail density and biomass varied in relation to plant cover and other factors. The density and biomass ofGeukensia at the edge of the marsh were comparable on the restored impounded and unimpounded marshes. Mean mussel densities ranged from 80 to 240/m2 and mean mussel biomass varied from 24.8–64.8 g dry wt/m2 in different low marsh areas. In contrast, below the impoundment dike, meanGeukensia density was 1100±96.4 SE/m2 and meanGeukensia biomass was 303.6±33.28 SE g dry wt/m2. A consideration of all available evidence leads to the conclusion that the impounded marsh is in an advanced phase of restoration.  相似文献   

2.
A three-year study of Connecticut, USA, salt-marsh vegetation was undertaken to determine the relationship of its distribution on the marsh surface to tidal levels, particularly mean high water (MHW) as measured on each of three sites representing different tidal amplitudes. Elevations and species present were measured on 1-m2 grids in 10x 70-m belt transects at each site. After the data were subjected to discriminant analysis and other standard statistical procedures, the results showed that 98.4% of all observations ofSpartina alterniflora Loisel. occurred at or below MHW. The data can aid in salt-marsh restoration by offering a reliable indicator of what species should be planted when restored elevations and on-site MHW are known.  相似文献   

3.
Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.  相似文献   

4.
Under the United States Oil Pollution Act of 1990, natural resource trustees are charged with assessing natural resource impacts due to an oil spill and determining the type and amount of natural resource restoration that will compensate the public for the impacts. Habitat equivalency analysis is a technique through which the impacts due to the spill and the benefits of restoration are quantified; both are quantified as habitat resources and associated ecological services. The goal of the analysis is to determine the amount of restoration such that the services lost are offset by services provided by restoration. In this paper, we first describe the habitat equivalency analysis framework. We then present an oil spill case from coastal Louisiana, USA, where the framework was applied to quantify resource impacts and determine the scale of restoration. In the Louisiana case, the trustees assessed impacts for oiled salt marsh and direct mortality to finfish, shellfish, and birds. The restoration project required planting salt-marsh vegetation in dredge material that was deposited on a barrier island. Using the habitat equivalency analysis framework, it was determined that 7.5 ha of the dredge platform should be planted as salt marsh. The planted hectares will benefit another 15.9 ha through vegetative spreading resulting in a total of 23.4 ha that will be enhanced or restored as compensation for the natural resource impacts.  相似文献   

5.
Effective management of tidal wetlands requires periodic data on the boundaries, extent, and condition of the wetlands. In many states, wetlands are defined wholly, or in combination with other criteria, by the presence of particular emergent halophytic plants. Many important characteristics of the wetlands ecosystem are related directly to the production of emergent plant material or may be inferred from knowledge of the distribution of emergent plant species. Remote-sensing techniques have been applied to mapping of the distribution of wetland vegetation but not to quantitative evaluation of the condition of that vegetation.Recent research in the tidal wetlands of Delaware and elsewhere has shown that spectral canopy reflectance properties can be quantitatively related to the emergent green biomass ofSpartina alterniflora (salt marsh cord grass) throughout the peak growing season (April through September, in Delaware). Periodic measurements of this parameter could be applied to calculations of net aerial primary productivity for large areas ofS. alterniflora marsh in which conventional harvest techniques may be prohibitively time consuming. The method is species specific and, therefore, requires accurate discrimination ofS. alterniflora from other vegetation types. Observed seasonal changes in species spectral signatures are shown to have potential for improving multispectral categorization of tidal wetland vegetation types.  相似文献   

6.
Salt marsh vegetation change in response to tidal restriction   总被引:4,自引:0,他引:4  
Vegetation change in response to restriction of the normal tidal prism of six Connecticut salt marshes is documented. Tidal flow at the study sites was restricted with tide gates and associated causeways and dikes for purposes of flood protection, mosquito control, and/or salt hay farming. One study site has been under a regime of reduced tidal flow since colonial times, while the duration of restriction at the other sites ranges from less than ten years to several decades. The data indicate that with tidal restriction there is a substantial reduction in soil water salinity, lowering of the water table level, as well as a relative drop in the marsh surface elevation. These factors are considered to favor the establishment and spread ofPhragmites australis (common reed grass) and other less salt-tolerant species, with an attendant loss ofSpartina-dominated marsh. Based on detailed vegetation mapping of the study sites, a generalized scheme is presented to describe the sequence of vegetation change from typicalSpartina- toPhragmites-dominated marshes. The restoration of thesePhragmites systems is feasible following the reintroduction of tidal flow. At several sites dominated byPhragmites, tidal flow was reintroduced after two decades of continuous restriction, resulting in a marked reduction inPhragmites height and the reestablishment of typical salt marsh vegetation along creekbanks. It is suggested that large-scale restoration efforts be initiated in order that these degraded systems once again assume their roles within the salt marsh-estuarine ecosystem.  相似文献   

7.
Experimental short-term desalination and drainage of salt marsh cores in greenhouse microcosms caused Spartina production to increase after one growing season, reflecting decreased salt stress and sulfide toxicity. However, production thereafter declined, likely due to pyrite oxidation and acidification in drained treatments and sulfide accumulation in waterlogged treatments. A survey of longer-term (decadal) effects of diking on peat composition of Cape Cod, Massachusetts, USA, marshes revealed acidification, Fe(II) mobilization, and decreased organic content in drained sites. Despite the aerobic decomposition of organic matter, abundant nutrients remained as sorbed NH4 and mineral-bound PO4. In diked, seasonally waterlogged sites, porewater alkalinity, sulfide, ammonium and orthophosphate were much lower, and organic solids higher, than in adjacent natural marsh. Seawater was added to cores from diked marshes to study the effects of tidal restoration. Salination of the drained peat increased porewater pH, alkalinity, ammonium, orthophosphate, Fe, and Al; copious ammonium N, and Fe(II) for sulfide precipitation favored Spartina growth. Salination of diked–waterlogged peat increased sulfate reduction and caused 6–8 cm of sediment subsidence. The resulting increase in porewater sulfides and waterlogging decreased vigor of transplanted Spartina alterniflora. Results indicate that seawater restoration should proceed cautiously to avoid nutrient loading of surface waters in drained sites or sulfide toxicity in diked–waterlogged marshes.  相似文献   

8.
Data are presented on the vegetation dynamics of two impounded marshes along the Indian River Lagoon, in east-central Florida, USA. Vegetation in one of the marshes (IRC 12) was totally eliminated by overflooding and by hypersaline conditions (salinities over 100 ppt) that developed there in 1979 after the culvert connecting the marsh with the lagoon was closed. Over 20% recovery of the herbaceous halophytesSalicornia virginica, S. bigelovii, andBatis maritima was observed at that site after the culvert was reopened in 1982, but total cover in the marsh remains well below the original 75%. No recovery of mangroves was observed at this site. The second site (SLC 24), while remaining isolated from the lagoon during much of the study, did not suffer the complete elimination of vegetation experienced at the first site. At this location, mangroves increased in cover and frequency with a concomitant decrease in herbaceous halophytes. Considerable damage to the vegetation was evident at IRC 12 when the impoundment was closed and flooded for mosquito control in 1986. Although the damage was temporary, its occurrence emphasizes the need of planning and constant monitoring and adjustment of management details as conditions within particular marshes change. Storms and hurricanes may be important in promoting a replacement of black mangroves by red mangroves in closed impoundments because the former cannot tolerate pneumatophore submergence for long periods of time. University of Florida-IFAS Journal Series R-00521.  相似文献   

9.
Construction of 653 ha of salt marsh habitat from dredged material near the Aransas National Wildlife Refuge, Texas, has been proposed, with the goal of increasing the area of habitat available to endangered whooping cranes (Grus americana). We assessed prototype created wetlands, and their similarity to natural reference sites, in terms of topography, vegetation, and hydrology. The created sites were steeply sloped relative to natural sites and were dominated by monotypic stands of Spartina alterniflora. Natural sites were dominated by vegetation more tolerant of desiccation and hypersalinity and by unvegetated salt pans. Differences in vegetation communities and distributions of habitat types resulted from efforts to enhance habitat diversity in created marsh cells through manipulation of marsh topography. However, the scale at which this diversity occurred in natural marsh of the study area was not considered. When constructing wetlands in cellular configurations, we recommend creation of large complexes of adjoining, hydrologically linked, cells wherein the desired habitat diversity is created at the scale of the entire complex, rather than within a single cell. Suggested design modifications would increase the similarity of created marshes to natural reference sites, potentially improving habitat function.  相似文献   

10.
Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004–March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum (Didelphis virginiana), nine-banded armadillo (Dasypus novemcinctus), striped skunk (Mephitis mephitis), and northern raccoon (Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should focus on creating underpasses or using other means to reduce roadkill rates.  相似文献   

11.
Spartina alterniflora was transplanted into dieback areas of a salt marsh in southeast Louisiana at two elevations (ambient and +30 cm) with and without macro- (N, P, and K) and micronutrient (Fe, Mn, Cu, and Zn) additions to determine if transplant success is dependent on increasing elevation or nutrients.Spartina alterniflora transplanted into elevated plots had more than twice the above- and belowground biomass as compared to nonelevated plots after three months of growth. Additionally, there was significantly more vegetative reproduction (greater culm density and number of newly produced culms) in elevated plots as compared to plots at ambient elevation. Macronutrient additions increased culm densities only in elevated plots.Spartina alterniflora transplanted into nonelevated plots had lower survival rates even when transplants received nutrient additions. These results suggest thatS. alterniflora may be transplanted successfully into degraded salt-marsh areas if elevation is increased. The addition of nutrients without a concomitant increase in elevation is not sufficient for transplant success.  相似文献   

12.
Salt marshes dominated by Spartina alterniflora and the associated networks of tidal creeks that drain them are characteristic geographical features of southeastern estuaries, important nursery habitat areas, and preferred sites for residential development. As the size of the coastal population increases, so has the number of requests for dock permits. With each new request for a dock permit, public concerns about the cumulative environmental impacts of dock proliferation on the coastal environment have increased. The objective of this particular study was to evaluate the impacts of shading by dock structures on stem densities of S. alterniflora in South Carolina coastal marshes. Shading impacts under individual docks were extrapolated to the tidal creek (local), county, and statewide scales. Dock structures were sampled both under and next to the walkway in the Charleston Harbor area of South Carolina. The density of S. alterniflora under docks was significantly lower than that which occurred next to the docks (i.e., 5 m away) for the short-form, tall-form, and both forms combined. We estimated that shading effects from dock structures in South Carolina decreased the stem density of S. alterniflora by 71%. Dock shading effects were small when evaluated from the perspective of the amount of marsh that occurs within specific tidal creeks (0.03–0.72%), in coastal counties at a maximum dock length (0.01–0.98%), or statewide (0.01–0.13%) at a maximum dock length. However, approximately 7,000 docks have been permitted over the last decade, resulting in a loss of salt marsh equivalent to 60 ha.1Denise M. Sangers present address: Office of Ocean and Coastal Resource Management, South Carolina Department of Health and Environmental Control, 1362 McMillan Avenue, Suite 400 Charleston, South Carolina 29405, USA. 2 A. Frederick Hollands present address: Hollings Marine Laboratory, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA.  相似文献   

13.
The amount of ecological restoration required to mitigate or compensate for environmental injury or habitat loss is often based on the goal of achieving ecological equivalence. However, few tools are available for estimating the extent of restoration required to achieve habitat services equivalent to those that were lost. This paper describes habitat equivalency analysis (HEA), a habitat-based “service-to-service” approach for determining the amount of restoration needed to compensate for natural resource losses, and examines issues in its application in the case of salt marsh restoration. The scientific literature indicates that although structural attributes such as vegetation may recover within a few years, there is often a significant lag in the development of ecological processes such as nutrient cycling that are necessary for a fully functioning salt marsh. Moreover, natural variation can make recovery trajectories difficult to define and predict for many habitat services. HEA is an excellent tool for scaling restoration actions because it reflects this ecological variability and complexity. At the same time, practitioners must recognize that conclusions about the amount of restoration needed to provide ecological services equivalent to those that are lost will depend critically on the ecological data and assumptions that are used in the HEA calculation.  相似文献   

14.
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.  相似文献   

15.
Key aspects of environmental management exist within a legislative framework. The Rivers and Foreshores Improvement Act 1948 (NSW) and several Regional Environmental Plans created under the Environmental Planning and Assessment Act 1979 (NSW) make reference to ‘the top of the bank’ for defining areas of protected land adjacent to rivers, within which development consent may be required. It is an arbitrary term and its use within the Rivers and Foreshores Improvement Act 1948 (NSW) leads to confusion. This paper examines the range of definitions of ‘the top of the bank’ in respect of natural watercourses and aims to provide a more lucid and effective definition that will clarify existing ambiguities in legal interpretation. The paper examines the historical origins of the phrase ‘top of the bank’, finding that stereotyped Eurocentric views of what a river ‘should look like’ have impaired the legal definition for Australian rivers, thereby influencing common law and the development of statutory definitions. Judicial applications of the phrase ‘top of the bank’ are examined from a geomorphological perspective, demonstrating the misconceptions of the term in a legal context. The paper identifies the existence of widespread support for the need to protect land adjacent to rivers in the interests of environmental, economic and social sustainability. It concludes by calling for legislative reform that is both tailored to the individual site and consistent with overarching goals at the catchment scale.  相似文献   

16.
Returning canal spoil banks into canals, or backfilling, is used in Louisiana marshes to mitigate damage caused by dredging for oil and gas extraction. We evaluated 33 canals backfilled through July 1984 to assess the success of habitat restoration. We determined restoration success by examining canal depth, vegetation recolonization, and regraded spoil bank soils after backfilling. Restoration success depended on: marsh type, canal location, canal age, marsh soil characteristics, the presence or absence of a plug at the canal mouth, whether mitigation was on- or off-site, and dredge operator performance.Backfilling reduced median canal depth from 2.4 to 1.1 m, restored marsh vegetation on the backfilled spoil bank, but did not restore emergent marsh vegetation in the canal because of the lack of sufficient spoil material to fill the canal and time. Median percentage of cover of marsh vegetation on the canal spoil banks was 51.6%. Median percentage of cover in the canal was 0.7%. The organic matter and water content of spoil bank soils were restored to values intermediate between spoil bank levels and predredging marsh conditions.The average percentage of cover of marsh vegetation on backfilled spoil banks was highest in intermediate marshes (68.6%) and lowest in fresh (34.7%) and salt marshes (33.9%). Average canal depth was greatest in intermediate marshes (1.50 m) and least in fresh marshes (0.85 m). Canals backfilled in the Chenier Plain of western Louisiana were shallower (average depth = 0.61 m) than in the eastern Deltaic Plain (mean depth range = 1.08 to 1.30 m), probably because of differences in sediment type, lower subsidence rate, and lower tidal exchange in the Chenier Plain. Canals backfilled in marshes with more organic soils were deeper, probably as a result of greater loss of spoil volume caused by oxidation of soil organic matter. Canals ten or more years old at the time of backfilling had shallower depths after backfilling. Depths varied widely among canals backfilled within ten years of dredging. Canal size showed no relationship to canal depth or amount of vegetation reestablished. Plugged canals contained more marsh reestablished in the canal and much greater chance of colonization by submerged aquatic vegetation compared with unplugged canals. Dredge operator skill was important in leveling spoil banks to allow vegetation reestablishment. Wide variation in dredge performance led to differing success of vegetation restoration.Complete reestablishment of the vegetation was not a necessary condition for successful restoration. In addition to providing vegetation reestablishment, backfilling canals resulted in shallow water areas with higher habitat value for benthos, fish, and waterfowl than unfilled canals. Spoil bank removal also may help restore water flow patterns over the marsh surface. Increased backfilling for wetland mitigation and restoration is recommended.  相似文献   

17.
The high degree of physical disturbance associated with conventional response options to oil spills in wetlands is driving the investigation of alternative cleanup methodologies. In March 1995, a spill of gas condensate in a brackish marsh at Rockefeller Wildlife Refuge in southwestern Louisiana was remediated through the use of in situ burning. An assessment of vegetation recovery was initiated in three treatment marshes: (1) oil-impacted and burned, (2) oil impacted and unburned, and (3) a nonoiled unburned reference. We compared percent cover, stem density, and biomass in the treatment marshes to define ecological recovery of the marsh vegetation and soil hydrocarbon content to determine the efficacy of in situ burning as a cleanup technique. Burning led to a rapid decrease in soil hydrocarbon concentrations in the impacted-and-burned marsh to background levels by the end of the first growing season. Although a management fire accidentally burned the oil-impacted-and-unburned and reference marshes in December 1995, stem density, live biomass, and total percent cover values in the oil-impacted-and-burned marsh were equivalent to those in the other treatment marshes after three years. In addition, plant community composition within the oil-impacted-and-burned marsh was similar to the codominant mix of the grasses Distichlis spicata (salt grass) and Spartina patens (wire grass) characteristic of the surrounding marsh after the same time period. Rapid recovery of the oil-impacted-and-unburned marsh was likely due to lower initial hydrocarbon exposure. Water levels inundating the soil surface of this grass-dominated marsh and the timing of the in situ burn early in the growing season were important factors contributing to the rapid recovery of this wetland. The results of this in situ burn evaluation support the conclusion that burning, under the proper conditions, can be relied upon as an effective cleanup response to hydrocarbon spills in herbaceous wetlands.  相似文献   

18.
Construction of 653 ha of salt marsh habitat from dredged material near the Aransas National Wildlife Refuge, Texas, has been proposed, with the goal of increasing the area of habitat available to endangered whooping cranes (Grus americana). We assessed prototype created wetlands, and their similarity to natural reference sites, in terms of topography, vegetation, and hydrology. The created sites were steeply sloped relative to natural sites and were dominated by monotypic stands of Spartina alterniflora. Natural sites were dominated by vegetation more tolerant of desiccation and hypersalinity and by unvegetated salt pans. Differences in vegetation communities and distributions of habitat types resulted from efforts to enhance habitat diversity in created marsh cells through manipulation of marsh topography. However, the scale at which this diversity occurred in natural marsh of the study area was not considered. When constructing wetlands in cellular configurations, we recommend creation of large complexes of adjoining, hydrologically linked, cells wherein the desired habitat diversity is created at the scale of the entire complex, rather than within a single cell. Suggested design modifications would increase the similarity of created marshes to natural reference sites, potentially improving habitat function.  相似文献   

19.
We combined a natural experiment with field surveys and GIS to investigate the effects of dust from recreational trails and access roads on the federally threatened Valley elderberry longhorn beetle (“VELB,” Desmocerus californicus dimorphus) and its host plant, elderberry (Sambucus mexicana). Dust is listed in the species recovery plan as a threat to the VELB and unpaved surfaces are common throughout the riparian corridors where the VELB lives, yet the effects of dust on the VELB have been untested. We found that dust deposition varied among sites and was highest within 10 m of trails and roads, but was similar adjacent to dirt and paved surfaces within sites. Elderberry density did not differ with distance from dirt surfaces. Despite similar within-site dust levels, elderberry adjacent to paved surfaces were less stressed than those near dirt ones, possibly because increased runoff from paved surfaces benefited elderberry. Dust deposition across sites was weakly correlated with elderberry stress symptoms (e.g., water stress, dead stems, smaller leaves), indicating that ambient dust (or unmeasured correlates) influenced elderberry. Direct studies of the VELB showed that its distribution was not negatively affected by the proximity to dirt surfaces. Dust from low traffic dirt and paved access roads and trails, therefore, affected VELB presence neither directly nor indirectly through changed elderberry condition. These results suggest that the placement of VELB mitigation, restoration, and conservation areas can proceed independently of access roads if dust and traffic levels do not exceed those in our study site. Furthermore, dust control measures are likely to be unnecessary under such conditions. The potential effects of increased traffic and dust levels are addressed through a literature review.  相似文献   

20.
Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, aSalicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity ofS. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号