首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We simulated hydrological and biogeochemical responses to logging in a forested watershed to determine the vulnerability and/or resiliency of the forest ecosystems in the Lake Shumarinai Basin in northern Hokkaido, Japan. We used a biogeochemical model (PnET-CN) and a rainfall–runoff model (HYCYMODEL) to predict ecosystem responses. The PnET-CN model simulated well the observed NO3 concentrations in streamwater, particularly at high concentrations during snowmelt; however, the model could not simulate small increases in NO3 during the summer. By considering hydrological processes within the watershed and combining the model with the HYCYMODEL (PnET + HYCYMODEL), the seasonality of streamwater NO3 concentrations was better simulated. Using these models, the long-term effects of logging were simulated for coniferous, deciduous, and mixed forests. NO3 concentrations in streamwater increased in response to the logging disturbance in both coniferous and deciduous forests. In the coniferous forest, NO3 concentrations reached a maximum 10 years after logging, and high concentrations persisted for 30 years. In contrast, NO3 concentrations in the deciduous forest reached a maximum within 3–4 years and recovered to pre-disturbance levels after 15 years. We also used the models to determine the effects of different sizes and types (coniferous, deciduous, and mixed forest) of logging areas on Lake Shumarinai. The model results indicated that large areas of cutting require more than 100 years for complete lake recovery. Whereas the annual discharge to the lake minimally increased, the annual NO3 load greatly increased. Our simulation results elucidate the vulnerability and resiliency of forest ecosystems and provide valuable information for ecosystem management.  相似文献   

2.
The environmental consequence of meeting the planet’s energy requirements has shown that biological degradation of organic constituent from wastewater does not only produces biogas. It also produces flammable methane that has 21 times more global warming potential or greenhouse effect than carbon dioxide. This becomes a loss of potential renewable energy when it is flared. This study investigates recoverable energy from cassava wastewater and effect of unrecovered onsite (not from treatment plant) wastewater energy. Sludge from both onsite untreated and offsite treated wastewater from a cassava processing station in a sub urban community of Nigeria was analyzed. The result shows that the offsite treatment has a methane potential of 27.428 m3/day compared to the onsite methane emission potential with 17.807 m3/day. The onsite 17.807 m3/day of methane is equivalent to 0.126 kgCH4/year of emitted methane base on industrial procedure standards by the IPCC (2006) guidelines for national greenhouse gas inventories. An additional 54.03% of methane will be recovered if the onsite emissions were to be captured . At an emission efficiency of 0.025 kgCH4/kg COD, the untreated wastewater indicates a potential contribution to the greenhouse effect. A mathematical model analysis was presented for ease in determining the amount of methane emitted from the untreated wastewater. This study support suggested methodologies and previous work comparing anaerobic offsite methane potential and untreated wastewater methane emission potentials along with its greenhouse effects.  相似文献   

3.
The benthic macrofauna of the Segara Anakan lagoon, Java, Indonesia and its fringing mangroves were investigated between May 2004 and August 2006. This lagoon has been affected by various human activities for decades, in particular fishing, effluents from agriculture and industry, and illegal deforestation. In total, 163 taxa were identified, including 127 species occurring in the mangrove forest and 59 species in the subtidal. Mean density of macrobenthos was 2.5-fold higher in the central (881.8 ± 1,151.3 ind. m?2) than in the eastern mangrove site (356.3 ± 218.8 ind. m?2). Community structures differed significantly between these sites and showed a serial shift during the investigation period. Gastropods dominated the community in the central mangrove location, whereas sipunculids, polychaetes and gastropods had similar densities in the eastern site. Differences in community composition were best explained by three sediment properties: pore water salinity, δ13Corg, and Corg/N. It is suggested that small-scale heterogeneity of food availability and quality is a main factor determining the small-scale variability of the community composition. Compared to other Indo-West Pacific mangroves, species richness and densities are high. However, the dominance of specific taxa, especially of opportunistic species and the comparably low species richness in the subtidal of the lagoon may be attributed to the high sediment input by rivers in the central part and to the large-scale cutting of mangroves. Continuous tree logging will probably lead to a further spread of two fast growing understorey plants and thus to an increase of uniform swamp sites and a decrease of micro-habitats for benthic macrofauna. To our knowledge, this is the first detailed study on the spatio-temporal variation of benthic macrofauna in mangroves of Indonesia.  相似文献   

4.
The status of mangroves within and adjacent to Kiunga Marine Protected Area (MPA) were assessed by means of aerial photographs and intensive ground truthing. Vegetation maps (1 : 25,000) were produced on GIS environment making it possible to store, retrieve and analyze various types of information very quickly. The maps together with the digitized information provide important tools to the management of mangroves of Kiunga MPA since various proposed treatments can now be entered and summarized thus providing useful overviews for planning, implementation and monitoring.The present inventory revealed that the existing mangrove forests within and adjacent to Kiunga MPA have a net standing volume of 2,354,004.85 m3 in 16,035.94 ha. There are eight species of mangrove trees, of which Rhizophora mucronata and Ceriops tagal are dominant. The standing volume ranges between 6.85 to 710.0 m3 ha–1 for stem with diameter above 5.0 cm. The average volume of the entire study area was 145.88 m3 ha–1, which corresponds to a stocking rate of 1736 stems per ha. Given its high potential productivity and regeneration, mangroves within and adjacent to Kiunga MPA have excellent prospects for sustainable exploitation.  相似文献   

5.
Soil management practices for sustainable agro-ecosystems   总被引:1,自引:0,他引:1  
A doubling of the global food demand projected for the next 50 years poses a huge challenge for the sustainability of both food production and global and local environments. Today’s agricultural technologies may be increasing productivity to meet world food demand, but they may also be threatening agricultural ecosystems. For the global environment, agricultural systems provide both sources and sinks of greenhouse gases (GHGs), which include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). This paper addresses the importance of soil organic carbon (SOC) for agro-ecosystems and GHG uptake and emission in agriculture, especially SOC changes associated with soil management. Soil management strategies have great potential to contribute to carbon sequestration, since the carbon sink capacity of the world’s agricultural and degraded soil is 50–66% of the historic carbon loss of 42–72 Pg (1 Pg=1015 g), although the actual carbon storage in cultivated soil may be smaller if climate changes lead to increasing mineralization. The importance of SOC in agricultural soil is, however, not controversial, as SOC helps to sustain soil fertility and conserve soil and water quality, and organic carbon compounds play a variety of roles in the nutrient, water, and biological cycles. No-tillage practices, cover crop management, and manure application are recommended to enhance SOC storage and to contribute to sustainable food production, which also improves soil quality. SOC sequestration could be increased at the expense of increasing the amount of non-CO2 GHG emissions; however, soil testing, synchronized fertilization techniques, and optimum water control for flooding paddy fields, among other things, can reduce these emissions. Since increasing SOC may also be able to mitigate some local environmental problems, it will be necessary to have integrated soil management practices that are compatible with increasing SOM management and controlling soil residual nutrients. Cover crops would be a critical tool for sustainable soil management because they can scavenge soil residual nitrogen and their ecological functions can be utilized to establish an optimal nitrogen cycle. In addition to developing soil management strategies for sustainable agro-ecosystems, some political and social approaches will be needed, based on a common understanding that soil and agro-ecosystems are essential for a sustainable society.  相似文献   

6.
This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of interrelationships among time points and countries, in order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 and 2030 by country and sector, using a GHG emission reduction-assessment model of high resolution regarding region and technology, and of high consistency with intertemporal, interregional, and intersectoral relationships. Global GHG emission reduction potentials relative to baseline emissions in 2020 are 8.4, 14.7, and 18.9 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 /tCO2eq., corresponding to +33, +8, and −3 %, respectively, relative to 2005. Global emission reduction potentials at a cost below 50 $/tCO2eq. for nuclear power and carbon capture and storage are 2.3 and 2.2 GtCO2eq., respectively, relative to baseline emissions in 2030. Longer-term perspectives on GHG emission reductions toward 2030 will yield more cost-effective reduction scenarios for 2020 as well.  相似文献   

7.
Carbon (C) sequestration in soils is gaining increasing acceptance as a means of reducing net carbon dioxide (CO2) emissions to the atmosphere. Numerous studies on the global carbon budget suggest that terrestrial ecosystems in the mid-latitudes of the Northern Hemisphere act as a large carbon sink of atmospheric CO2. However, most of the soils of North America, Australia, New Zealand, South Africa and Eastern Europe lost a great part of their organic carbon pool on conversion from natural to agricultural ecosystems during the explosion of pioneer agriculture, and in Western Europe the adoption of modern agriculture after the Second World War led to a drastic reduction in soil organic carbon content. The depletion of organic matter is often indicated as one of the main effects on soil, and the storage of organic carbon in the soil is a means of improve the quality of soils and mitigating the effects of greenhouse gas emission. The soil organic carbon in an area of Northern Italy over the last 70 years has been assessed In this study. The variation of top soil organic carbon (SOC) ranged from −60.3 to +6.7%; the average reduction of SOC, caused by agriculture intensification, was 39.3%. This process was not uniform, but related to trends in land use and agriculture change. For the area studied (1,394 km2) there was an estimated release of 5 Tg CO2-C to the atmosphere from the upper 30 cm of soil in the period 1935–1990.  相似文献   

8.
This study aims to estimate the intensification of rice farming in Myanmar particularly due to chemical fertilizer application, using farm-level data obtained from field surveys conducted in the 2000s. Relatively high-input rice farming was found in dry season crop in the delta zone and the double crop in well-irrigated lowlands of the central dry zone. The chemical fertilizer used there was about 88–159 kg NPK (nitrogen, N; phosphate, P2O5; and potash, K2O) ha−1 (76–110 kg nitrogen (N) ha−1), and the average paddy yield ranged from 2.8 to 3.5 ton ha−1. On the other hand, nutrient input in survey sites of rain-fed lowland was between 11 and 53 kg NPK ha−1 (5 and 36 kg N ha−1), and the yield ranged from 1.1 to 2.3 ton ha−1. The national average of paddy yield and nutrient input of fertilizer was roughly estimated to be around 2.4 ton ha−1 and 60 kg NPK ha−1, respectively. A gap was observed between these calculated values and the official statistics. A comparison of fertilizer use efficiency for rice production in Myanmar with that in China and Vietnam has shown that the efficiency in Myanmar has not declined to an inappropriate level even in its intensive ones. Rice production in Myanmar has room for increasing the yield by capital intensification. Nevertheless, considering its sustainability as well as productivity, further intensification in rice farming technology in irrigated lowlands of Myanmar may neither be the best nor the only way.  相似文献   

9.
VALUING ECOSYSTEM SERVICES OF CHILEAN TEMPERATE RAINFORESTS   总被引:1,自引:0,他引:1  
The Valdivian Rainforest Ecoregion (35°–48° S) in southern South America is among the ecosystems with highest conservation priority worldwide due to its rich diversity, degree of endemism, and critical conservation status. Temperate rainforests in this vast area are essential as source of biological resources and to maintain different ecosystem services which remain largely unmeasured and unvalued. Consequently, the benefits they provide are not reflected in decision-making regarding forest management and conservation. Based on existing studies and results from ongoing research we describe selected ecosystem services and provide estimates of their economic value. Timber benefits for secondary forests expressed as net present stumpage values were US$ 3742 ha−1 and US$ 3093 ha−1 for sustainable forest management (SFM) and unsustainable harvesting, respectively. Timber benefits for old growth forests␣equaled US$ 4546 ha−1 and US$ 5718 ha−1, for SFM and unsustainable harvesting, respectively, using an 8% discount rate. Annual benefits from recreation were US$ 1.6 ha−1 and US$ 6.3 ha−1 for the two most important national parks located in the study area. The annual value of maintaining soil fertility was US$ 26.3 ha−1 using the replacement cost of nutrient losses due to soil erosion. The annual economic value of water supply for human consumption using the production function method was US$ 235 ha−1. These results provide valuable information on the kind and magnitude of values that could be relevant in decision-making concerning conservation and management of native forests in the Valdivian Rainforest Ecoregion.  相似文献   

10.
The study was conducted to assess the potential of Norwegian agricultural ecosystems to sequester carbon (C) based on the data from some long-term agronomic and land use experiments. The total emission of CO2 in Norway in 1998 was 41.4 million metric ton (MMT), of which agriculture contributed only 0.157 MMT, or <0.4% of the total emissions. With regards to methane (CH4) and nitrous oxide (N2O) gases, however, agricultural activities contributed 32.5% and 51.3% of their respective emissions in Norway. The soil organic carbon (SOC) losses associated with accelerated soil erosion in Norway are estimated at 0.475 MMTC yr–1. Land use changes and soil/crop management practices with potential for SOC sequestration include conservation tillage methods, judicious use of fertilizers and manures, use of crop residues, diverse crop rotations, and erosion control measures. The potential for SOC sequestration is 0.146 MMTC yr–1 for adopting conservation tillage, 0.011–0.035 MMTC yr–1 for crop residue management, 0.026 MMTC yr–1 for judicious use of mineral fertilizer, 0.016–0.135 MMTC yr–1 for manure application, and 0.036 MMTC yr–1 for adopting crop rotations. The overall potential of these practices for SOC sequestration ranges from 0.591 to 1.022 MMTC yr–1 with an average value of 0.806 MMTC yr–1. Of the total potential, 59% is due to adoption of erosion control measures, 5.8% to restoration of peat lands, 21% to conversion to conservation tillage and residue management, and 14% to adoption of improved cropping systems. Enhancing SOC sequestration and improving soil quality, through adoption of judicious land use and improved system of soil and crop management, are prudent strategies for sustainable management of soil, water and environment resources.Readers should send their comments on this paper to: bhaskarn ath@aol.com within 3 months of publication of this issue.  相似文献   

11.
Woody biomass generated in short-rotation coppice (SRC) plantations with aspen (Populus tremula L.) has good properties for bioenergy crop production: annual yields are high, labour input per year is low, and it is ecologically valuable because of the multi-year rotation periods. Eastern Germany has a special advantage in producing bioenergy crops: the former “agricultural cooperatives” built up quite large farms with, compared to Western Germany, comparatively large fields. Therefore, a modelling study of the potential and the impacts of aspen SRC plantations in the five eastern federal states of Germany under the recent climate and future climate projections was conducted. The ecophysiological forest growth model 4C was used to simulate the growth of aspen SRC plantations and their impacts on carbon in soils, and groundwater recharge, on selected suitable areas currently under crops but with marginal site conditions for cropping. A clear signal to enhanced growth condition over the whole area can be seen in the simulation of the mean annual woody biomass yield under conditions of climate change, which increased from 7.47 t DW ha−1 a−1 under the recent climate to 9.26 t DW ha−1 a−1 at the end of the considered future period 2034–2055 under climate change. The mean soil carbon sequestration rate was 0.81 t C ha−1 a−1 under the recent climate and could rise up to 0.93 t C ha−1 a−1 under the assumption of climate change. On the other hand, the mean annual percolation rate, used as an indicator of impacts on the regional water budget, will diminish under future climatic conditions. The results suggest that aspen SRC plantations are a suitable contribution to regional CO2 mitigation and carbon sequestration under possible change of climate, but that negative impacts on the regional water budget are possible.  相似文献   

12.
The nutrient discharges from point and diffuse sources in more than 200 German river basins were estimated for the periods 1983–1987 and 1993–1997 employing the MONERIS model. This model distinguishes between six diffuse pathways and point source emissions from waste water treatment plants and direct industrial discharges. It was estimated that the total nitrogen input into the German river systems amounts to about 819,000 t N year–1 in the period 1993 to 1997. These emissions have decreased since the mid-eighties by about 266,000 t N year–1, mainly caused by the reduction of point discharges. For phosphorus the emissions have been reduced by 56,290 t P year–1 and amount to 37,250 t P year–1 in the period 1993–1997. Based on emission data a retention module estimates riverine nutrient loads. The comparison of the model output with the observed loads shows a deviation as low as 30% and 50% for nitrogen and phosphorus, respectively. The regional resolution of the model indicates the relative importance of different pathways for phosphorus and nitrogen input into river systems. Electronic Publication  相似文献   

13.
The rice-wheat belt comprises nearly 24–27 million ha in South and East Asia. Rice is generally grown in flooded fields whereas the ensuing wheat crop requires well-drained soil conditions. Consequently, both crops differ markedly in nature and intensity of greenhouse gas (GHG) fluxes, namely emission of (1) methane (CH4) and (2) nitrous oxide (N2O) as well as the sequestration of (3) carbon dioxide. Wetland rice emits large quantities of CH4; strategies to CH4 emissions include proper management of organic inputs, temporary (mid-season) field drainage and direct seeding. As for the wheat crop, the major GHG is N2O that is emitted in short-term pulses after fertilization, heavy rainfall and irrigation events. However, N2O is also emitted in larger quantities during fallow periods and during the rice crop as long as episodic irrigation or rainfall result in aerobic-anaerobic cycles. Wetland rice ensures a relatively high content of soil organic matter in the rice-wheat system as compared to permanent upland conditions. In terms of global warming potential, baseline emissions of the rice-wheat system primarily depend on the management practices during the rice crop while emissions from the wheat crop remain less sensitive to different management practices. The antagonism between CH4 and N2O emissions is a major impediment for devising effective mitigation strategies in rice-wheat system - measures to reduce the emission of one GHG often intensify the emission of the other GHG.  相似文献   

14.
Closed landfills need after-closure rehabilitation. The chosen option should ensure greenhouse gases release, from the landfill, is not promoted once settled. The objective of this study was to estimate and confront, during different seasons, CH4, CO2 and N2O emissions under three vegetation covers in a closed landfill in Buenos Aires, Argentina. CH4 (methane), CO2 (carbon dioxide) and N2O (nitrous oxide) emissions from landfill’s technosol under spontaneous vegetation (control), Pennisetum purpureum and Miscanthus giganteus (biomass crops), were quantified with non-steady-state non-flow-through chambers, in July 2014 and from February to July 2015. A linear regression analysis was performed to relate the variables “flux of a gas” and “concentration of that gas” from the 3 treatments and 6 dates, separating the 5 sampling times. A high correlation between concentrations and fluxes of CO2 and N2O was found, but no correlation was established for CH4. Mean emissions (2014–2015) varied from: ?2.3 to 639.41 mgCH4 m?2 day?1, 3884 to 46,365 mgCO2 m?2 day?1 and 0.40 to 14.59 mgN2O m?2 day?1. Vegetation covers had no significant effect on CH4 and N2O concentration in time, but they had on CO2 concentration. Season of the year had a significant effect on concentration of the three gases. This is the first study on CH4, CO2 and N2O emissions from a landfill closed 27 years ago covered with biomass crops.  相似文献   

15.
Assessment of environmental changes in the Orinoco River delta   总被引:1,自引:0,他引:1  
Major anthropogenic driven changes in the hydrologic and sedimentation patterns of the Orinoco River have had an impact on environmental conditions in the delta. The abrupt water flow reduction from 3,600 to 200 m3 s–1 in one of its major distributaries resulting from dam construction forced its transformation from a fresh-water body into a tidal channel with an increase in salinity level (as far as 100 km upstream) and with well-mixed water at the mouth and estuarine connection to the Paria Gulf. Three different sectors along this distributary can be identified (indicated by the Na/Cl ratio in the water). As a result, noticeable changes have occurred in the mangrove community which moved about 60 km further upstream. The changes have also promoted the formation of new islands of sediment progradation at the mouth of this distributary, where successional colonization and species replacement by different species of grasses and mangroves take place. Electronic Publication  相似文献   

16.
Increasing value is attributed to mangroves due to their considerable capacity to sequester carbon, known as ‘blue carbon’. Assessments of opportunities and challenges associated with estimating the significance of carbon sequestered by mangroves need to consider a range of disciplinary perspectives, including the bio-physical science mangroves, social and economic issues of land use, local and international law, and the role of public and private finance. We undertook an interdisciplinary review based on available literature and fieldwork focused on parts of the Mekong River Delta (MRD). Preliminary estimates indicate mangrove biomass may be 70–150 t ha?1, but considerably larger storage of carbon occurs in sediments beneath mangroves. These natural stores of carbon are compromised when mangroves are removed to accommodate anthropogenic activities. Mangroves are an important resource in the MRD that supplies multiple goods and services, and conservation or re-establishment of mangroves provides many benefits. International law and within-country environmental frameworks offer increasing scope to recognize the role that mangrove forests play through carbon sequestration, in order that these might lead to funding opportunities, both in public and private sectors. Such schemes need to have positive rather than negative impacts on the livelihoods of the many people living within and adjacent to these wetlands. Nevertheless, many challenges remain and it will require further targeted and coordinated scientific research, development of economic and social incentives to protect and restore mangroves, supportive law and policy mechanisms at global and national levels, and establishment of long-term financing for such endeavours.  相似文献   

17.
Varioys analytical methodologies for the monitoring of formaldehyde (CH2O) concentrations in domestic environments have been developed and evaluated. A modified CEA Instruments, Inc., analyzer has near-real-time CH3O-specific analysis capability with an 0.01 mg/m3 detection limit. A solid sorbent, 13X molecular sieve has been utilized in a pumped collection unit with a demonstrated 0.03–12.5 mg/m3 linear dynamic range using sampling periods of ≤ 15 min. The development of screening-type techniques has included (1) a semipermeable-membrane passive sampler for measurements of average CH2O concentrations over 8–24-h periods, and (2) a visual colorimetric analysis method for semiquantitative CH2O determinations using solid chemical reagents. A preliminary field evaluation has been completed. The results show excellent agreement between the new CH2O monitoring methods and a reference sampling and analysis technique. A generation apparatus for the production of CH2O vapor is also reported with a demonstrated linear dynamic range between 0.003 and 12.5 mg/m3.  相似文献   

18.
The limnological record of human impact on catchment land cover and on lake sedimentation during the historical period has been established for Pinto Lake in Central Coastal California. In addition, the sedimentary record of the ‘pre-impact’ condition preserves evidence of a climatic control on the nature of lake sedimentation. Chronological marker horizons have been determined using pollen data in combination with the documented land-use history and introductions of exotic species. Further chronological data have been determined using 14C and 137Cs. The impact of Mexican and Euro-American immigrants and their ‘imported’ land-use practices is clearly reflected in an order of magnitude increase in the rate of lake sedimentation to c. 9 kg m−2 year−1 (c. 2 cm year−1) between 1770 and 1850. Here, the occurrence of exotic plant species indicates disturbance as early as c. 1769–1797, whilst redwood deforestation between 1844 and 1860 represents the most significant human impact. Changes in the nature of sedimentation prior to this reveal a high degree of sensitivity to changes in precipitation where subtle decreases in lake level and the supply of runoff-derived mineral matter have resulted in two periods of organic lake sedimentation c. 650–900 and 1275–1750. Set against this background condition of high sensitivity, the dramatic impacts of Euro-American settlement are unsurprising. An erratum to this article can be found at  相似文献   

19.
The developing countries i.e., the non-Annex-I countries (parties to the Kyoto Protocol but not responsible to any reduction target yet) in the Kyoto Protocol whose economies are in transition are also allowed to reduce GHG emissions. Among these, the countries that have accepted the Kyoto Protocol may be benefited from CDM projects to promote sustainable development. The developed countries i.e., the Annex-I countries (that have signed the Kyoto Protocol & are responsible to have specific GHG emission reduction target) or the investing countries, in return, have privilege to purchase CER credits (in units equivalent to one tonne of CO2 gas emission reduction) to meet the emission target as specified in the Kyoto Protocol. The key step in understanding about CDM is to grasp the concept of “baseline” and “additionality”. The “Baseline” is the emissions level that would have existed if a CDM project had not happened. The feature of an approved CDM project is that the planned reductions would not occur without the additional incentive provided by emission reduction credits; this concept is known as “Additionality”. According to environmental additionality concept, baseline emission minus project emission is equal to emissions reduction. “Investment Additionality,” ultimately rejected during negotiation of the “Marrakech Accords” and “Financial Additionality,” are the two important concepts. The concept of trading of CER matches to the idea of Pigovian tax (equal to the negative externality and which is considered one of the “traditional” means of bringing a modicum of market forces) in Economics, making pollution more costly to the polluter, as the polluters have negative cost since they save money by polluting; hence, there are supposed negative externalities associated with the market activity. Economic theory predicts that in an economy where the cost of reaching mutual agreement between parties is high and where pollution is diffuse, Pigovian tax will be an efficient way to promote the public interest and will lead to an improvement of the quality of life measured by the Genuine Progress Indicator and other human economic indicators, as well as higher gross domestic product growth. We can seek a level of pollution such that the marginal savings (MS) to one polluting unit from pollution (−MC) is equal to marginal damage (MD) from pollution over the entire population, since pollution is a public bad i.e., MS (x*) = ∑MDi (x*) where ∑Di (x) is the total damage. Though the responsibility of reduction in emission does not lie on the non-Annex-I countries, still effort of maintaining global emission balance can be expected equally from developed and developing countries. The responsibilities of Kyoto Protocol are (a) to reduce global GHG emissions, (b) to bring about sustainable development in the developing countries lie on above two groups since its effect on February 16, 2005. Different polluters have different costs of pollution control. The least costly way of controlling pollution from various sources that reflects different costs of pollution control making the set of environmental regulations to achieve the emission target at the lowest cost makes the regulation cost-effective. Though efficiency is not attainable for many regulations, cost-effectiveness is attainable.  相似文献   

20.
To better understand how Batrachupems tibetanus responds to different temperature regimes in the blood parameters and to estimate the change in plasma cortisol level in this species exposed to different temperatures, the animals were stochastically divided into three groups and exposed respectively to 4.6°C, 14.6°C and 19.6°C for 12 days. The concentrations of glucose, total protein, albumin, triacylglycerol, Ca2+, K+, Na+, Cl, and plasma cortisol level were measured respectively. There was no significant difference between the plasma cortisol level of the control group and the experiment groups. Glucose level at 4.6°C and 19.6°C was significantly lower than glucose level at 14.6°C. The plasma triacylglycerol level was significantly influenced by acclimation temperature. The concentration of total protein, albumin, globulin and the ratio between albumin and globulin were not significantly influenced by temperature when compared with control group. There was no significant change in concentration of Ca2+ at different temperatures. The concentration of K+ was significantly influenced by temperature. Plasma K+ level significantly increased at 19.6°C. The plasma Na+ level and Cl were significantly influenced by temperature. Na+: Cl ratio was significantly influenced by temperature. Therefore, glucose, triacylglycerol, Na+ and Cl levels could be considered as indicators of thermal stress in B. tibetanus; plasma cortisol, albumin, globulin levels, and albumin/globulin ratio are not influenced by temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号