首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity.  相似文献   

2.
Woody plant encroachment is a worldwide phenomenon in grassland and savanna systems whose consequence is often the development of an alternate woodland state. Theoretically, an alternate state may be associated with changes in system state variables (e.g., species composition) or abiotic parameter shifts (e.g., nutrient availability). When state-variable changes are cumulative, such as in woody plant encroachment, the probability of parameter shifts increases as system feedbacks intensify over time. Using a Before-After Control-Impact (BACI) design, we studied eight pairs of grassland sites undergoing various levels of eastern redcedar (Juniperus virginiana) encroachment to determine whether responses of flora and fauna to experimental redcedar removal differed according to the level of pretreatment redcedar cover. In the first year after removal, herbaceous plant species diversity and evenness, woody plant evenness, and invertebrate family richness increased linearly with pretreatment redcedar cover, whereas increases in small-mammal diversity and evenness were described by logarithmic trends. In contrast, increases in woody plant diversity and total biomass of terrestrial invertebrates were accentuated at levels of higher pretreatment cover. Tree removal also shifted small-mammal species composition toward a more grassland-associated assemblage. During the second year postremoval, increases in herbaceous plant diversity followed a polynomial trend, but increases in most other metrics did not vary along the pretreatment cover gradient. These changes were accompanied by extremely high growing-season precipitation, which may have homogenized floral and faunal responses to removal. Our results demonstrate that tree removal increases important community metrics among grassland flora and fauna within two years, with some responses to removal being strongly influenced by the stage of initial encroachment and modulated by climatic variability. Our results underscore the importance of decisive management for reversing the effects of woody plant encroachment in imperiled grassland ecosystems.  相似文献   

3.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

4.
Woody encroachment is a widespread and acute phenomenon affecting grasslands and savannas worldwide. We performed a meta-analysis of 29 studies from 13 different grassland/savanna communities in North America to determine the consequences of woody encroachment on plant species richness. In all 13 communities, species richness declined with woody plant encroachment (average decline = 45%). Species richness declined more in communities with higher precipitation (r2 = 0.81) and where encroachment was associated with a greater change in annual net primary productivity (ANPP; r2 = 0.69). Based on the strong positive correlation between precipitation and ANPP following encroachment (r2 = 0.87), we hypothesize that these relationships occur because water-limited woody plants experience a greater physiological and demographic release as precipitation increases. The observed relationship between species richness and ANPP provides support for the theoretical expectation that a trade-off occurs between richness and productivity in herbaceous communities. We conclude that woody plant encroachment leads to significant declines in species richness in North American grassland/savanna communities.  相似文献   

5.
Trait-based community assembly theory suggests that trait variation among co-occurring species is shaped by two main processes: abiotic filtering, important in stressful environments and promoting similarity, and competition, more important in productive environments and promoting dissimilarity. Previous studies have indeed found trait similarity to decline along productivity gradients. However, these studies have always been done on single trophic levels. Here, we investigated how interactions between trophic levels affect trait similarity patterns along environmental gradients. We propose three hypotheses for the main drivers of trait similarity patterns of plants and herbivores along environmental gradients: (1) environmental control of both, (2) bottom-up control of herbivore trait variation, and (3) top-down control of grass trait variation. To test this, we collected data on the community composition and trait variation of grasses (41 species) and grasshoppers (53 species) in 50 plots in a South African savanna. Structural equation models were used to investigate how the range and spacing of within-community functional trait values of both grasses and their insect herbivores (grasshoppers; Acrididae) respond to (1) rainfall and fire frequency gradients and (2) the trait similarity patterns of the other trophic level. The analyses revealed that traits of co-occurring grasses became more similar toward lower rainfall and higher fire frequency (environmental control), while showing little evidence for top-down control. Grasshopper trait range patterns, on the other hand, were mostly directly driven by vegetation structure and grass trait range patterns (bottom-up control), while environmental factors had mostly indirect effects via plant traits. Our study shows the potential to expand trait-based community assembly theory to include trophic interactions.  相似文献   

6.
Underwood N  Halpern SL 《Ecology》2012,93(5):1026-1035
How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics.  相似文献   

7.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

8.
Otto SB  Berlow EL  Rank NE  Smiley J  Brose U 《Ecology》2008,89(1):134-144
Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.  相似文献   

9.
Abstract:  Studies of the effects of logging on Lepidoptera rarely address landscape-level effects or effects on larval, leaf-feeding stages. We examined the impacts of uneven-aged and even-aged logging on the abundance, richness, and community structure of leaf-chewing insects of white ( Quercus alba L.) and black ( Q. velutina L.) oak trees remaining in unharvested areas by sampling 3 years before and 7 years after harvest. After harvest, white oaks in uneven-aged sites had 32% fewer species of leaf-chewing insects than control sites. This reduction in species richness may have resulted from changes in microclimate (reducing plant quality and/or changing leaf phenology) that affected a much larger total area of each site than did even-aged cuts. For black oak after harvest, species richness in uneven- and even-aged sites increased relative to levels before harvest. Harvesting did not alter total insect density or community structure in the unlogged habitat for either oak species with one exception: insect density on black oak increased in the oldest forest block. Community structure of herbivores of black and white oaks in clearcut gaps differed from that of oaks in intact areas of even-aged sites. Furthermore, both richness and total insect density of black oaks were reduced in clearcut gaps. We suggest that low-level harvests alter herbivore species richness at the landscape level. Treatment effects were subtle because we sampled untreated areas of logged landscapes, only one harvest had occurred, and large temporal and spatial variation in abundance and richness existed. Although the effects of logging were greater in uneven-aged sites, the effects of even-aged management are likely to increase as harvesting continues.  相似文献   

10.
Bruno JF  Boyer KE  Duffy JE  Lee SC 《Ecology》2008,89(9):2518-2528
The interactive effects of changing biodiversity of consumers and their prey are poorly understood but are likely to be important under realistic scenarios of biodiversity loss and gain. We performed two factorial manipulations of macroalgal group (greens, reds, and browns) and herbivore species (amphipods, sea urchin, and fish) composition and richness in outdoor mesocosms simulating a subtidal, hard-substratum estuarine community in North Carolina, U.S.A. In the experiment where grazer richness treatments were substitutive, there were no significant effects of algal or herbivore richness on final algal biomass. However, in the experiment in which grazer treatments were additive (i.e., species-specific densities were held constant across richness treatments), we found strong independent and interactive effects of algal and herbivore richness. Herbivore polycultures reduced algal biomass to a greater degree than the sum of the three herbivore monocultures, indicating that the measured grazer richness effects were not due solely to increased herbivore density in the polycultures. Taking grazer density into account also revealed that increasing algal richness dampened grazer richness effects. Additionally, the effect of algal richness on algal biomass accumulation was far stronger when herbivores were absent, suggesting that grazers can utilize the increased productivity and mask the positive effects of plant biodiversity on primary production. Our results highlight the complex independent and interactive effects of biodiversity between adjacent trophic levels and emphasize the importance of performing biodiversity-ecosystem functioning experiments in a realistic multi-trophic context.  相似文献   

11.
Resource consumption often increases with greater consumer biodiversity. This could result either from complementarity among consumers or the inclusion of particular key species, and it is often difficult to differentiate between these two mechanisms. We exploited a simple plant mutation (reduced production of surface waxes) to alter foraging within a community of aphid predators, and thus perhaps shift the nature of resulting predator diversity effects. We found that greater predator species richness dramatically increased prey suppression and plant biomass only on mutant, reduced-wax pea plants (Pisum sativum). On pea plants from a sister line with wild type, waxier plant surfaces, predator species richness did not influence predators' impacts on herbivores or plants. Thus, a change in plant surface structure acted to turn on, or off, the cascading effects of predator diversity. Greater predator richness encouraged higher densities of true predators but did not lead to greater reproduction by a parasitoid, Aphidius ervi; fecundity of each natural enemy species was similar for the two plant types. Behavioral observations indicated that although A. ervi was less likely to forage within species-rich predator communities, low-wax plants mitigated this interference by encouraging generally greater A. ervi foraging and thus high rates of aphid dislodgement (aphids dropped from plants to escape A. ervi, but not the other predators). Thus, only species-rich, low-wax plants simultaneously encouraged strong species-specific effects of A. ervi, and strong complementarity among the other predator species. In summary, our study provides evidence that diversity effects in predator assemblages are sensitive to habitat characteristics. Further, we show that a simple plant morphological trait, controlled by a single gene mutation, can dramatically alter the cascading effects of predator species richness on herbivores and plants.  相似文献   

12.
Maclean JE  Goheen JR  Doak DF  Palmer TM  Young TP 《Ecology》2011,92(8):1626-1636
Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.  相似文献   

13.
Dramatic declines in populations of large elasmobranchs, as well as the potential release of elasmobranch mesopredators, have led to interest in the ecological role of this group of fishes. The first step to elucidating their ecological importance, however, is an understanding of elasmobranch community structure. Such studies are relatively uncommon, especially in communities where human impacts are thought to be low. We used visual surveys and a variety of capture methods to determine spatial and temporal variation in the species composition of a sandflat elasmobranch community in the relatively pristine ecosystem of Shark Bay, Australia. Overall, juvenile batoids dominated the community. Eleven elasmobranch species (10 batoids, 1 shark) were found to inhabit the sandflats during the cold season (June–August) and 21 species (12 batoids, 9 sharks) were recorded during the warm season. The overall density of elasmobranchs occupying the sandflat was also higher during the warm season. Nearshore areas, especially during the warm season, supported the highest densities of elasmobranchs overall as well as the dominant species (giant shovelnose ray, Glaucostegus typus, and reticulate whipray, Himantura uarnak). Such high elasmobranch abundance may be driven by a combination of factors including prey availability, predator avoidance, and behavioral thermoregulation. The high species richness and density of elasmobranchs in such a restricted area suggest that elasmobranch mesopredators could exert strong top-down impacts in nearshore environments in the absence of human impacts, but raises questions of how resources are partitioned among apparently similar species in this system.  相似文献   

14.
15.
Abstract:  World chocolate demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on tropical rainforests and wild species in cocoa-producing countries. Cocoa, "the chocolate tree," is traditionally produced under a diverse and dense canopy of shade trees that provide habitat for a high diversity of organisms. The current trend to reduce or eliminate shade cover raises concerns about the potential loss of biodiversity. Nevertheless, few studies have assessed the ecological consequences and economic trade-offs under different management options in cocoa plantations. Here we describe the relationships between ant ecology (species richness, community composition, and abundance) and vegetation structure, ecosystem functions, and economic profitability under different land-use management systems in 17 traditional cocoa forest gardens in southern Cameroon. We calculated an index of profitability, based on the net annual income per hectare. We found significant differences associated with the different land-use management systems for species richness and abundance of ants and species richness and density of trees. Ant species richness was significantly higher in floristically and structurally diverse, low-intensity, old cocoa systems than in intensive young systems. Ant species richness was significantly related to tree species richness and density. We found no clear relationship between profitability and biodiversity. Nevertheless, we suggest that improving the income and livelihood of smallholder cocoa farmers will require economic incentives to discourage further intensification and ecologically detrimental loss of shade cover. Certification programs for shade-grown cocoa may provide socioeconomic incentives to slow intensification.  相似文献   

16.
Feeley KJ  Terborgh JW 《Ecology》2006,87(1):144-150
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades.  相似文献   

17.
Forests Too Deer: Edge Effects in Northern Wisconsin   总被引:12,自引:0,他引:12  
Abstract: Browsing by white-tailed deer (Odocoileus virginianus) can profoundly affect the abundance and population structure of several woody and herbaceous plant species. Enclosure studies and population surveys reveal that past and current deer densities as low as 4 deer/km2 may prevent regeneration of the once common woody species, Canada yew (Taxus canadensis), eastern hemlock (Tsuja canadensis), and white cedar Puja occidentalis), as well as several herbaceous species. Prior to European settlement, forests in northern Wisconsin contained relatively sparse deer populations (<4/km2), but extensive timber cutting in the late nineteenth century boosted deer populations. Continued habitat fragmentation resulting from scattered timber harvests and the creation of "wildlife openings" to improve deer forage maintain these high densities throughout much of the Northeast.
Because deer wander widely, the effects of high deer densities penetrate deeply into remaining stands of old and mature forest, greatly modifying their composition Thus, abundant early successional and "edge" habitat, and the high deer densities they engender, represent significant external threats to these plant communities. We hypothesize that establishing large (200–400 km2) continuous areas of maturing forest, especially in conjunction with increased hunting, could reduce local deer densities and so provide a simple and inexpensive method for retaining species sensitive to the deleterious effects of browsing.  相似文献   

18.
Abstract:  Local species diversity of insect herbivores feeding on rainforest vegetation remains poorly known. This ignorance limits evaluation of species extinction patterns following various deforestation scenarios. We studied leaf-chewing insects feeding on 59 species of woody plants from 39 genera and 18 families in a lowland rainforest in Papua New Guinea and surveyed all plants with a stem diameter at breast height of ≥5 cm in a 1-ha plot within the same area. We used two extrapolation methods, based on randomized species-accumulation curves, to combine these two data sets and estimate the number of species of leaf-chewing herbivores feeding on woody plants from the 1-ha area. We recorded 58,483 feeding individuals from 940 species of leaf-chewing insects. The extrapolation estimated that there were 1567–2559 species of leaf-chewing herbivores feeding on the 152 plant species from 97 genera and 45 families found in 1 ha of the forest. Most of the herbivore diversity was associated with plant diversity on the familial and generic levels. We predicted that, on average, the selection of 45 plant species each representing a different family supported 39% of all herbivore species, the 52 plant species each representing a different additional genus from these families supported another 39% of herbivore species, and the remaining 55 plant species from these genera supported 22% of herbivore species. Lepidoptera was the most speciose taxon in the local fauna, followed by Coleoptera and orthopteroids (Orthoptera and Phasmatodea). The ratio of herbivore to plant species and the estimated relative species richness of the Lepidoptera, Coleoptera, and orthopteroids remained constant on the spatial scale from 0.25 to 1 ha. However, the utility of local taxon-to-taxon species ratios for extrapolations to geographic scales requires further study.  相似文献   

19.
Aquilino KM  Stachowicz JJ 《Ecology》2012,93(4):879-890
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.  相似文献   

20.
Albarracin MT  Stiling P 《Ecology》2006,87(10):2673-2679
It has been suggested, but rarely tested, that the relative strength of top-down and bottom-up factors in communities varies along an environmental stress gradient. We compared the strength of bottom-up and top-down effects on the densities of insect herbivores along a range of sites of different salinities in west-central Florida. We used a 2 x 2 factorial design with plots divided into four treatments: (1) bottom-up manipulation, where fertilizer was applied to increase plant quality; (2) top-down manipulation, where sticky traps were used to reduce the effects of natural enemies (parasitoids); (3) bottom-up and top-down manipulation, where fertilizer was applied and sticky traps were used; and (4) control plots. These plots were established along a range of salinities among seven different sites containing the salt marsh plant Borrichia frutescens. In each plot, we determined the parasitism levels and abundances of the sap sucker Pissonotus quadripustulatus, the gall maker Asphondylia borrichiae, and the lepidopteran stem borer Argyresthia spp. Gall density, Pissonotus density, and stem borer density were significantly higher in lower salinity sites, suggesting a strong effect of environmental stress. There was a significant increase of galls and Pissonotus and a marginally significant increase of bored stems on fertilized plots but not on trapped plots. There was a significant interaction of site and fertilizer on gall parasitism. There were no interactions of either treatment with salinity on herbivore densities. The general lack of interaction between salinity level and other treatments on herbivore densities contrasts with our previous result where treatment effects did vary with salinity level on a large experimentally generated salinity gradient at one site. Thus, the results of the present paper suggest that, while environmental stress can modify top-down and bottom-up effects on herbivores at single sites, variation in site-to-site factors, possibly including clonal identity of plant, affects herbivore densities so much as to swamp out any observable interaction between environmental stress and top-down or bottom-up factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号