首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
综合类   1篇
基础理论   1篇
  2023年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 438 毫秒
1
1.
Aquilino KM  Stachowicz JJ 《Ecology》2012,93(4):879-890
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号