首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fenton's reagent in its conventional form, although effective for contaminant treatment, is impractical from an in‐situ field application perspective due to low pH requirements (i.e., pH 3‐4), and limited reagent mobility when introduced into the subsurface. Modified Fenton's processes that use chelated‐iron catalysts and stabilized hydrogen peroxide have been developed with the goal of promoting effective in‐situ field application under native pH conditions (i.e., pH 5‐7), while extending the longevity of hydrogen peroxide. Laboratory experiments conducted in soil columns packed with organic soil to compare modified Fenton's catalysts with conventional catalysts (acidified iron [II]) indicated superior mobility and sorption characteristics for modified Fenton's catalysts. Furthermore, the acidic pH of a conventional catalyst was buffered to the native soil range, leading to increased iron precipitation/adsorption following permeation through the soil column. The chelates present within the modified Fenton's catalyst showed greater affinity toward iron compared with the native soil and, hence, minimized iron loss through adsorption during the permeation process even at pH 5‐7. Field effectiveness of the modified Fenton's process was demonstrated at a former dry‐cleaning facility located in northeast Florida. Preliminary laboratory‐scale experiments were conducted on soil‐slurry and groundwater samples to test the process efficacy for remediation of chlorinated solvents. Based on successful experimental results that indicated a 94 percent (soil slurry) to 99 percent (groundwater) reduction of cis‐1,2‐DCE, PCE, and TCE, a field‐scale treatment program was initiated utilizing a plurality of dual‐zone direct push injection points installed in a grid fashion throughout the site. Results of treatment indicated a 72 percent reduction in total chlorinated contamination detected in the site groundwater following the first injection event; the reduction increased to 90 percent following the second injection event. © 2002 Wiley Periodicals Inc.  相似文献   

2.
Although known to be one of the most effective oxidants for treatment of organic contaminants, catalyzed hydrogen peroxide (CHP) is typically not used for soil mixing applications because of health and safety concerns related to vapor generation and very rapid rates of reaction in open excavations. In likely the first large‐scale in situ CHP soil mixing application, an enhanced CHP, modified Fenton's reagent (MFR), was applied during soil mixing at the Kearsarge Metallurgical Superfund Site in New Hampshire. An innovative rotating dual‐axis blender (DAB) technology was used to safely mix the MFR into low‐plasticity silt and clay soils to remediate residual 1,1,1‐trichloroethane (111TCA); 1,1‐dichloroethene (11DCE); and 1,4‐dioxane (14D). It was expected that the aggressive treatment approach using relatively “greener” hydrogen peroxide (HP) chemistry would effectively treat Site contaminants without significant byproduct impacts to groundwater or the adjacent pond. The remediation program was designed to treat approximately 3,000 cubic yards of residual source area soil in situ by aggressively mixing MFR into the soils. The subsurface interval treated was from 7 to 15 feet below ground surface. To accurately track the soil mixing process and MFR addition, the Site was divided into 109 10‐foot square treatment cells that were precisely located, dosed, and mixed using the DAB equipped with an on‐board GPS system. The use of stabilizing agents along with careful calculation of the peroxide dose helped to ensure vapor‐free conditions in the vicinity of the soil mixing operation. Real‐time sampling and monitoring were critical in identifying any posttreatment exceedences of the cleanup goals. This allowed retreatment and supplemental testing to occur without impacting the soil mixing/in situ chemical oxidation (ISCO) schedule. Posttreatment 24‐hr soil samples were collected from 56 random locations after ensuring that the HP had been completely consumed. The posttreatment test results showed that 111TCA and 11DCE concentrations were reduced to nondetect (ND) or below the cleanup goals of 150 μg/kg for 111TCA and 60 μg/kg for 11DCE. Supplemental posttreatment soil samples, collected six months after treatment, showed 100 percent compliance with the soil treatment goals. Groundwater samples collected one year after the MFR soil mixing treatment program showed either ND or low concentrations for 111TCA, 11DCE, and 14D. Successful stabilization and site restoration was performed after overcoming considerable challenges associated with loss of soil structure, high liquid content, and reduced bearing capacity of the blended soils.  相似文献   

3.
Industry and regulatory demands for rapid and cost-effective clean up of hydrocarbon and other contamination in soil and groundwater has prompted development and improvement of in-situ remediation technologies. In-situ technologies offer many advantages over ex-situ treatment alternatives, including lower initial capital and long-term operation and maintenance costs, less site disruption, no Resource Conservation and Recovery Act (RCRA) liability, and shorter treatment time necessary to achieve cleanup objectives. Fenton's reagent, a mixture of hydrogen peroxide and ferrous iron that generates a hydroxyl free radical as an oxidizing agent, is widely accepted for chemical oxidation of organic contaminants in the wastewater industry. In-situ implementation of Fenton's reagent for chemical oxidation of organic contaminants in soil and groundwater continues to grow in acceptance and application to a wide variety of environmental contaminants and hydrogeologic conditions (EPA, 1998).  相似文献   

4.
The phytoremediation potential of using tall fescue (Festuca arundinacea Schreb.) grass and sericea lespedeza (Lespedeza cuneata [Dum. ‐Cours.]) legume species was assessed using three different groups of organic contaminants in soil. One hundred parts per million (ppm) each of a nitroaromatic compound (TNT), a polycyclic aromatic hydrocarbon (Pyrene), and a polychlorinated biphenyl (Aroclor 1248) were used to contaminate the soils. The experiments were conducted using soils with high and low organic‐matter content. The results indicate that recoveries of Pyrene and TNT were very low in all treatments in soil with high organic‐matter content (6.3 percent) compared with recoveries in soil with low organic‐matter content (2.6 percent). In contrast, recoveries of PCB from soil were not dependent on the soil's organic‐matter content. Planting both the legume and grass species had significant effect on the transformations of TNT and PCB in the soil with low organic‐matter content and did not affect the fate of Pyrene in both soils. The amount of TNT transformed in the four months of plant growth was 63 percent in the tall fescue and 46 percent in the sericea‐planted soils, compared with only a 15 percent unaccounted loss in the unplanted control soils. Furthermore, the grass species, with its massive root system, was significantly better at causing TNT dissipation compared with the legume species, which has less root vegetative mass. The plant biomass, particularly the shoot weight of the tall fescue grass, was significantly increased as a result of TNT treatment. Tall fescue and sericea biomass did not appear to have any significant effect on Pyrene transformation. Planting sericea provided a significantly high level of PCB transformation in soils with either high or low amounts of organic matter. Tall fescue did not appear to have any significant effect on PCB transformation. © 2002 Wiley Periodicals, Inc.  相似文献   

5.
Remediation responsibilities of the U.S. Department of Energy (DOE) encompass a vast national complex of highly contaminated former weapons facilities. During the mid‐1990s, DOE announced its intentions to consolidate some waste types at specific sites. At about the same time, organizations and public officials around DOE sites urged a National Dialogue, designed to develop comprehensive solutions to the Department's needs for waste disposition ( transportation, treatment, and storage). Recent opposition from citizens and elected officials in Nevada and Washington State has presented obstacles to DOE's plans. Additionally, chairs of nine site‐specific advisory boards recommended that DOE support a National Stakeholder Forum, similarly designed to develop solutions to disposition needs. This article reviews the chronology of DOE's disposition efforts, along with public and state reactions and recommendations. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by‐products. An alternative bioremediation technology, which is cheaper and environ‐mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long‐term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called “thermoprobes” was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used—including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data—to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond.  相似文献   

8.
Heavy metal contamination of soil resulting from anthropogenic sources poses a significant challenge in many industrialized societies. The current technologies employed for removal of heavy metals often involve expensive ex-situ processes requiring sophisticated equipment and removal, transportation, and purification of the soil. Generally, in-situ remedial technologies are favored to ex-situ methods for detoxification, neutralization, degradation, or immobilization of contaminants. In-situ bioremediation is increasingly favored because of its effectiveness and low cost. A new type of bioremediation, known as vegetative remediation or “phytoremediation,” uses metal-tolerant hyperaccumulator plants to take up metal ions from soils and store them in their aboveground parts. To select the appropriate phytoremediation technology, one must understand the technical feasibility, cost effectiveness, and availability of the suitable plant species. Equally important is determining whether the site's soil conditions are optimal to enhance or restore the soil biological activity. Before phytoremediation can be exploited on a contaminated site, greenhouse-scale confirmatory testing is necessary to measure plant uptake and correlate shoot metal concentrations to available soil metals. These tests also validate that the harvesting and subsequent disposal of metal-containing plant tissues are environmentally safe and manageable.  相似文献   

9.
Land treatment facilities can provide effective treatment of secondary oily wastewater from maintenance operations, particularly in arid climates. Soil and underlying groundwater from a land treatment facility, which has been operating for eight years, were analyzed to determine the effectiveness of using bioremediation for the treatment of dissolved and free‐phase oil in maintenance wastewater. The study was conducted at a mining site in Western Australia. The facility was capable of treating 140 kiloliters (kL) of oily wastewater per day. The average petroleum hydrocarbon content of the wastewater was 2 percent weight per volume (w/v) based on data available for the first five years. The soil data indicate that the land treatment process has been operating efficiently even at high wastewater loadings with maximum degradation rates of 10–242 mg/kg per day. Based on the soil data, there is no evidence of accumulation of any metal or polycyclic aromatic hydrocarbon (PAH) compounds. The land treatment facility has led to only low levels of TPH (total petroleum hydrocarbons) contamination (<4 ppm) in the underlying groundwater. However, nitrate concentrations in the groundwater were shown to increase over the first five years of the facility's operation. This article reports and discusses the operational data from the land treatment process, illustrating its effectiveness in treating oily wastewater. © 2001 John Wiley & Sons, Inc.  相似文献   

10.
重金属污染土壤生物毒性的发光菌法测定及评价   总被引:1,自引:0,他引:1       下载免费PDF全文
向土壤中人为投加重金属污染物,制备了重金属含量不同的一系列污染土壤,对土壤重金属浸提条件进行了探究,并应用明亮发光杆菌T3(Photobacterium phosphoreum T3)对单一Cu、Cd和Pb污染及Cu-Cd和Cu-Pb复合重金属污染土壤的生物毒性进行了测定。实验结果表明,土壤重金属的最佳浸提剂为0.1 mol/L HCl溶液,最佳浸提时间为2.0 h。在单一重金属污染条件下:Cu表现出低浓度促进生长、高浓度抑制生长的双重生物效应,而Cd和Pb则表现出浓度与生物毒性的正相关性;3种重金属污染土壤的毒性强弱顺序为Cd>Pb>Cu。在复合重金属污染条件下,由于重金属之间的相互作用,污染土壤的生物毒性增强。  相似文献   

11.
Several compositions of Fenton's Reagent and hydrogen peroxide alone were used to disinfect combined sewage samples from a wastewater treatment facility. The presettled samples contained suspended solids (SS) and dissolved organic carbon (DOC) at concentrations of 28 and 290 mg/L, respectively. Disinfection with Fenton's Reagent was carried out at a pH between 5.90 and 6.0 and at a temperature of 25°C. All disinfected samples contained residual oxidants. Under all reaction conditions studied, complete inactivation of E. coli was achieved within one minute of the addition of Fenton's Reagent. Disinfection with hydrogen peroxide alone under similar conditions is incomplete even under much longer contact times. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

13.
The MicroBlower Sustainable Soil Vapor Extraction System is a cost‐effective device specifically designed for remediation of organic compounds in the vadose zone. The system is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction to natural attenuation. It can also be a better choice for remediating small source zones that are often found in “tight zones” that are controlled by diffusion rate. The MicroBlower was developed by the Savannah River National Laboratory at the US Department of Energy's Savannah River Site to address residual volatile organic compound (VOC) contamination after shutdown of active soil vapor extraction systems. In addition, the system has been deployed to control recalcitrant sources that are controlled by diffusion rates. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
This article presents the results of a study that was conducted to determine the effectiveness of using alfalfa (Medicago sativa L.) to enhance the phytoremediation of three different types of chemical contaminants. The chemicals studied were trinitrotoluene (TNT), the polycyclic aromatic hydrocarbon (PAH) pyrene, and the polychlorinated biphenyl (PCB) Aroclor 1248. Experiments were conducted using soils that contained high and low organic matter content. The results indicated that recoveries of pyrene and TNT from soil were highly dependent on the soil organic matter content, while the recovery of PCB was not. Significantly low levels of pyrene and TNT were recovered from all treatments in the soil with 6.3 percent organic matter content compared to recovery levels found in soil with 2.6 percent organic matter. The presence of alfalfa plants had a significant effect on the transformation of TNT and PCB in the low organic matter content soil only and had no effect on the fate of pyrene. In the low organic matter soil, only 15 percent and 17 percent of the initial TNT and PCB levels, respectively, were transformed in the unplanted control soils compared to 66 percent and 77 percent in the alfalfa planted pots. In both soil types, pyrene dissipation could not be attributed to the presence of alfalfa plants. Overall, it was concluded that under high soil organic matter conditions, adsorption and covalent binding to the soil organic matter appeared to be the dominant force of pyrene and TNT removal. The effectiveness of using alfalfa to enhance PCB and TNT transformations was more significant in the lower organic matter soil; thus phytoremediation had a greater effect in soils with lower organic matter content. © 2001 John Wiley & Sons, Inc.  相似文献   

15.
Hydrogasification of a coal/polyethylene mixture was carried out using a low concentration of polyethylene in the samples with the aim of industrial application. Coal/polyethylene mixtures in the ratio of 90:10 and 75:25 were used in this study. A hydrogasification experiment was conducted using a unique batch reactor at 1073 K under a 7.1 MPa hydrogen atmosphere. The reaction time varied from 1 to 80 s. The results revealed a methane yield from the mixtures that was noticeably greater than the values calculated from experimental results obtained from coal and polyethylene respectively, assuming no mutual influences. A significant synergistic effect was observed even when the polyethylene content was as low as 10 %. It is suggested that there might be an advantage in hydrogasification processes if waste plastics are mixed with coal, such content being practically assumed.  相似文献   

16.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

17.
Point Pelee National Park (PPNP) is highly contaminated with dichlorodiphenyltrichloroethane (DDT) and dieldrin due to the historical use of these two persistent organochlorine pesticides. Zero‐valent iron (ZVI) technology with and without amendments has been successfully used in the past to promote organochlorine pesticides degradation in several locations in North America and Europe. In this study, the use of two commercially available ZVI products, DARAMEND® and EHC®, to promote DDT and dieldrin degradation in PPNP's soil and groundwater were investigated. DARAMEND® was applied to PPNP's soil in a laboratory experiment and in an in situ pilot‐scale plot. In both cases, DARAMEND® did not significantly increase DDT or dieldrin degradation in treated soils. The effectiveness of EHC® was tested in a laboratory experiment that simulated the park's groundwater environment using PPNP's pesticide contaminated soil. The result was consistent with the one reported for DARAMEND®, in that there was no significant increase in DDT or dieldrin degradation in any of the samples treated with EHC®. These results demonstrate that both of these ZVI commercially available products are not suitable for in situ remediation at PPNP.  ©2017 Wiley Periodicals, Inc.  相似文献   

18.
The use and performance of soil vapor extraction (SVE) as an in-situ remedial technology has been limited at numerous sites because of both geologic and chemical factors. SVE systems are not well suited to sites containing low permeability soils or sites contaminated with recalcitrant compounds. Six-phase soil heating (SPSH) has been developed by the Battelle Pacific Northwest Laboratories (Battelle) to enhance SVE systems. The technology utilizes resistive soil heating to increase the vapor pressure of subsurface contaminants and to generate an in-situ source of steam. The steam strips contaminants sorbed onto soil surfaces and acts as a carrier gas, providing an enhanced mechanism by which the contaminants can reach an extraction well. Full-scale applications of SPSH have been performed at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina; at a former fire training site in Niagara Falls, New York; and at Fort Richardson near Anchorage, Alaska. At each site, chlorinated solvents were present in low permeability soils and SPSH was applied in conjunction with SVE. The results of the three applications showed that SPSH is a cost-effective technology that can reduce the time required to remediate a site using only conventional SVE.  相似文献   

19.
EPA's use of a 1 part per billion (ppb) level for dioxin contamination in residential soils is shown to be too high and not protective of public health. It was derived in a 1984 cancer risk assessment by another federal agency, but it is inconsistent with risk-based levels of 2 to 4 parts per trillion (ppt) obtained by using EPA's standard risk assessment methods. EPA has called the 1 ppb level a policy-based level, which correctly distinguishes it from a risk or health-based cleanup standard. The 1984 assessment is shown in this article to have considerable shortcomings. For over a decade, dioxins have been left in soils at levels posing health risks and sometimes at levels that EPA is legally required to address. Moreover, noncancer effects have been ignored, but recent work has shown them to support action at low ppt levels. To protect public health, be consistent with current scientific knowledge and other EPA policies, reduce confusion in the environmental management community, and be responsive to public demands for stringent dioxin cleanups, new EPA policy guidance for dioxin soil cleanups is needed, and key elements are presented in this article. In an ad hoc fashion, EPA Region 4 has recently used a 200 ppt dioxin cleanup level for residential soil, acknowledged to correspond to a one-in-ten-thousand cancer risk, at two Superfund sites, which environmental professionals should be aware of. This suggests a shift in EPA policy.  相似文献   

20.
Using an innovative, two-stage process to remediate uranium-contaminated soils, researchers at Los Alamos National Laboratory's (LANL's) Technical Area 33 (TA-33) successively reduced 218 cubic yards of contaminated soil to approximately 30 gallons of leachate solution and resins. In the first step, the contaminated soil is separated from the clean soil using the Thermo Nuclean (a division of the Thermo NUtech company) Segmented Gate System (SGS). Contaminated soil proceeds via conveyor belt to a separate storage bin to await further processing, while uncontaminated soil is returned to its original location. From the 218 cubic yards of soil excavated from the test site at TA-33, only seven cubic yards were found to contain uranium contamination above the criterion release limit, yielding an initial waste volume reduction of 97 percent. Using the containerized vat leaching (CVL) method, a technique borrowed from the mining industry, the uranium was then removed from the reduced volume of contaminated soil. This article describes the two processes and analyzes potential cost savings based on different disposal and storage options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号