首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Universal Soil Loss Equation (USLE) and its derivatives are widely used for identifying watersheds with a high potential for degrading stream water quality. We compared sediment yields estimated from regional application of the USLE, the automated revised RUSLE2, and five sediment delivery ratio algorithms to measured annual average sediment delivery in 78 catchments of the Chesapeake Bay watershed. We did the same comparisons for another 23 catchments monitored by the USGS. Predictions exceeded observed sediment yields by more than 100% and were highly correlated with USLE erosion predictions (Pearson r range, 0.73-0.92; p < 0.001). RUSLE2-erosion estimates were highly correlated with USLE estimates (r = 0.87; p < 001), so the method of implementing the USLE model did not change the results. In ranked comparisons between observed and predicted sediment yields, the models failed to identify catchments with higher yields (r range, -0.28-0.00; p > 0.14). In a multiple regression analysis, soil erodibility, log (stream flow), basin shape (topographic relief ratio), the square-root transformed proportion of forest, and occurrence in the Appalachian Plateau province explained 55% of the observed variance in measured suspended sediment loads, but the model performed poorly (r(2) = 0.06) at predicting loads in the 23 USGS watersheds not used in fitting the model. The use of USLE or multiple regression models to predict sediment yields is not advisable despite their present widespread application. Integrated watershed models based on the USLE may also be unsuitable for making management decisions.  相似文献   

2.
ABSTRACT: We have developed a computer model of soil loss on an upland watershed from the continuity considerations for sediment transport and from equations describing rill and interrill erosion. The model is based on dividing the upland area into a grid containing rill and interill zones, on the Universal Soil Loss Equation (USLE), and on equations describing detachment and transport capacity of rill flow. The USLE estimates the sediment load from the contributing areas. The location and amount of total erosion and deposition are determined by comparing the transport and detachment capacity of rill flow for specific storms. The model considers the mechanics of erosion process and can serve as basis for reservoir and channel design and land use planning.  相似文献   

3.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

4.
ABSTRACT: Water quality was monitored for 17 months during base flow periods in six agricultural watersheds to evaluate the impact of riparian vegetation on suspended solids and nutrient concentrations. In areas without riparian vegetation, both instream algal production and seasonal low flows appeared to be major determinants of suspended solids, turbidity, and phosphorus concentrations. Peak levels of all parameters were reached during the summer when flows were reduced and benthic algal production was high. Similar summer peaks were reached in streams receiving major point inputs but peaks occurred downstream from the input. Instream organic production was less important in regulating water quality in areas with riparian vegetation and permanent flows. Concentrations of suspended solids remained relatively constant, while phosphorus and turbidity increased in association with leaf fall in autumn. Intermittent flow conditions in summer increased the importance of instream organic production in controlling water quality, even when riparian vegetation was present. Efforts to improve water quality in agricultural watersheds during base flow should emphasize maintenance of riparian vegetation and stable flow conditions.  相似文献   

5.
Ability to adequately estimate sediment yield is an important step in dealing effectively with soil erosion problems. Predictions of sediment yield made using the Universal Soil Loss Equation (USLE) with different forms of sediment delivery ratio (SDR) are compared with those made by Modified USLE (MUSLE) and a fundamentally derived Erosion-Deposition Model (EDM). The USLE and USLE with SDR are poor predictors of sediment yield for individual storms compared to the MUSLE and EDM. Although MUSLE gave better results than USLE it showed somewhat more scatter of data points than the recently developed EDM.  相似文献   

6.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

7.
Global sustainability: Toward measurement   总被引:2,自引:0,他引:2  
The widespread interest in the concept of sustainable environment and development has been accompanied by the need to develop useful systems of measurement. We discuss the use of indicators which might be used to assess such conditions. Our characteristics, or criteria, for desirable global sustainability indicators are:
  • sensitivity to change in time
  • sensitivity to change across space or within groups
  • predictive ability
  • availability of reference or threshold values
  • ability to measure reversibility or controllability
  • appropriate data transformation
  • integrative ability
  • relative ease of collection and use
  • We discuss the basis of these characteristics, and examine two categories of indicators (soil erosion and population) and two specific indicators (physical quality of life index and energy imports as a percentage of consumption) for their value as sustainability measures.  相似文献   

    8.
    A series of computer programs designed to predict gross annual soil loss on a watershed basis by application of the Universal Soil Loss Equation (USLE) have been developed. The programs provide an easy-to-use, flexible, and standardized means of organizing base data and applying the USLE to large land areas. The programs can be used to assess and to evaluate the effects of changing land-use patterns and conservation practices on soil losses. Critical or problem areas can be readily identified. The USLE Computer Programs are a useful research tool for investigators involved in water quality management, 208 planning, or conservation research.The package of computer programs consists of three main components: data input, the Main Program, and the Totals Program. Input data include both field base data describing the watershed and corresponding values for the factors in the USLE. The Main Program calculates the average rate of soil loss (tons/ acre/yr) and the total soil loss (tons/yr) for the smallest subunit of the watershed identified as the soil unit. Also calculated is an RKLS factor, which is an indication of the erosive potential of a given soil type, slope, and slope length, under a particular rainfall regime. The Totals Program aggregates soil unit losses into progressively larger units, that is, field, farm, subwatershed, and watershed units. An example of the programs' versatility and use is presented.  相似文献   

    9.
    The goal of this research was to evaluate the relative effects of root density, freeze/thaw cycling, and soil properties on the erodibility and critical shear stress of streambanks. The erodibility and critical shear stress of rooted bank soils were measured in situ at 25 field sites using a submerged jet test device; several soil, vegetation, and stream chemistry characteristics shown to influence soil erosion were also assessed. Multiple linear regression analysis was conducted to determine those factors that most influenced streambank erodibility and the relative impact of riparian vegetation. Study results indicated that soil erosion is a complex phenomenon that depends primarily on soil bulk density. Freeze/thaw cycling, soil antecedent moisture content, the density of roots with diameters of 2 to 20 mm, soil texture, and the interaction of soil pore water and stream water had a significant impact on soil erodibility and critical shear stress, depending on soil type. Riparian vegetation had multiple significant effects on soil erodibility. In addition to reducing soil erodibility through root reinforcement, the streamside vegetation affected soil moisture and altered the local microclimate, which in turn affected freeze/thaw cycling (FTC). This study represents the first in situ testing of the erodibility of vegetated streambanks and provides a quantitative analysis on the effects of vegetation on streambank erosion, relative to other soil physical and chemical parameters.  相似文献   

    10.
    An erosion and sediment transport component incorporated in the HYdrology Simulation using Time‐ARea method (HYSTAR) upland watershed model provides grid‐based prediction of erosion, transport and deposition of sediment in a dynamic, continuous, and fully distributed framework. The model represents the spatiotemporally varied flow in sediment transport simulation by coupling the time‐area routing method and sediment transport capacity approach within a grid‐based spatial data model. This avoids the common, and simplistic, approach of using the Universal Soil Loss Equation (USLE) to estimate erosion rates with a delivery ratio to relate gross soil erosion to sediment yield of a watershed, while enabling us to simulate two‐dimensional sediment transport processes without the complexity of numerical solution of the partial differential governing equations. In using the time‐area method for routing sediment, the model offers a novel alternative to watershed‐scale sediment transport simulation that provides detailed spatial representation. In predicting four‐year sediment hydrographs of a watershed in Virginia, the model provided good performance with R2 of 0.82 and 0.78 and relative error of ?35% and 11% using the Yalin and Yang's sediment transport capacity equations, respectively. Prediction of spatiotemporal variation in sediment transport processes was evaluated using maps of sediment transport rates, concentrations, and erosion and deposition mass, which compare well with expected behavior of flow hydraulics and sediment transport processes.  相似文献   

    11.
    ABSTRACT: Riparian buffers are considered important management options for protecting water quality. Land costs and buffer performance, which are functions of local environmental characteristics, are likely to be key attributes in the selection process, especially when budgets are limited. In this article we demonstrate how a framework involving hydrologic models and binary optimization can be used to find the optimal buffer subject to a budget constraint. Two hydrologic models, SWAT and REMM, were used to predict the loads from different source areas with and without riparian buffers. These loads provided inputs for a binary optimization model to select the most cost efficient parcels to form a riparian buffer. This methodology was applied in a watershed in Delaware County, New York. The models were parameterized using readily available digital databases and were later compared against observed flow and water quality data available for the site. As a result of the application of this method, the marginal utility of incremental increases in buffer widths along the stream channel and the set of parcels to form the best affordable riparian buffer were obtained.  相似文献   

    12.
    In order to provide a more adequate means for the preservation and the enhancement of the environment, the United States and West Germany (the Federal Republic of Germany) have either created new institutions or altered existing agencies for the implementation of public policy. Along with these developments, a series of programs have been specifically designed to foster and maintain a quality environment. In this article, we examine the particular strategies employed in the implementation of environmental pollution control laws through the new or altered administrative arrangements in the two countries. The basic tools employed to implement environmental management strategies can be grouped as follows: traditional regulatory procedures, economic incentive concepts, information and volunteerism concepts, and government induced technological changes (USEPA 1976a). The following are examples of these techniques:
    1. Traditional regulatory procedures
      1. laws
      2. ordinances
      3. permits
      4. zoning
    2. Economic incentive concepts
      1. fines
      2. emission and effluent charges
      3. differential property rates
      4. subsidies
    3. Information and volunteerism concepts
      1. labeling programs
      2. increased dissemination through mass media
    4. Government-induced technological changes
      1. container controls
      2. subsidized recycling programs
      3. subsidized mass transportation systems
    The specific applicability of any of these techniques varies with the particular type and degree of pollution control necessary. In some instances, a combination of these techniques may be appropriate. The degree of public acceptability and cost-effectiveness of the various techniques may vary as a result of regional differences. Furthermore, the success of all of these techniques is dependent upon a high degree of voluntary compliance. Through the examination of the various policy implementation strategies we should be able to appreciate the interrelationships between the different levels of government in pollution control efforts in the United States and West Germany.  相似文献   

    13.
    In some watersheds, streambanks are a source of two major pollutants, phosphorus (P) and sediment. P originating from both uplands and streambanks can be transported and stored indefinitely on floodplains, streambanks, and in closed depressions near the stream. The objectives of this study were to (1) test the modified streambank erosion and instream P routines for the Soil and Water Assessment Tool (SWAT) model in the Barren Fork Creek watershed in northeast Oklahoma, (2) predict P in the watershed with and without streambank‐derived P, and (3) determine the significance of streambank erosion P relative to overland P sources. Measured streambank and channel parameters were incorporated into a flow‐calibrated SWAT model and used to estimate streambank erosion and P for the Barren Fork Creek using modified streambank erosion and instream P routines. The predicted reach‐weighted streambank erosion was 40 kg/m vs. the measured 42 kg/m. Streambank erosion contributed 47% of the total P to the Barren Fork Creek and improved P predictions compared to observed data, especially during the high‐flow events. Of the total P entering the stream system, approximately 65% was removed via the watershed outlet and 35% was stored in the floodplain and stream system. This study successfully applied the SWAT model's modified streambank erosion and instream P routines and demonstrated that streambank‐derived P can improve P modeling at the watershed scale. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

    14.
    Channel changes from 1919 to 1989 were documented in two study reaches of the Merced River in Yosemite National Park through a review of historical photographs and documents and a comparison of survey data. Bank erosion was prevalent and channel width increased an average of 27% in the upstream reach, where human use was concentrated. Here, trampling of the banks and riparian vegetation was common, and banks eroded on straight stretches as frequently as on meander bends. Six bridges in the upper reach constrict the channel by an average of 38% of the original width, causing severe erosion. In the downstream control reach, where human use was minimal, channel widths both decreased and increased, with a mean increase of only 4% since 1919. Bank erosion in the control reach occurred primarily on meander bends. The control reach also had denser stands of riparian vegetation and a higher frequency of large woody debris in channels. There is only one bridge in the lower reach, located at the downstream end. Since 1919, bank erosion in the impacted upstream reach contributed a significant amount of sediment (74,800 tonnes, equivalent to 2.0 t/km2/yr) to the river. An analysis of 75 years of precipitation and hydrologic records showed no trends responsible for bank erosion in the upper reach. Sediment input to the upper reach has not changed significantly during the study period. Floodplain soils are sandy, with low cohesion and are easily detached by lateral erosion. The degree of channel widening was positively correlated with the percentage of bare ground on the streambanks and low bank stability ratings. Low bank stability ratings were, in turn, strongly associated with high human use areas. Channel widening and bank erosion in the upper reach were due primarily to destruction of riparian vegetation by human trampling and the effect of bridge constrictions on high flow, and secondarily to poorly installed channel revetments. Several specific recommendations for river restoration were provided to park management.  相似文献   

    15.
    ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

    16.
    ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

    17.
    Dosskey, Michael G., Philippe Vidon, Noel P. Gurwick, Craig J. Allan, Tim P. Duval, and Richard Lowrance, 2010. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. Journal of the American Water Resources Association (JAWRA) 46(2):261-277. DOI: 10.1111/j.1752-1688.2010.00419.x Abstract: We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality. Our emphasis is on the role that riparian vegetation plays in protecting streams from nonpoint source pollutants and in improving the quality of degraded stream water. Riparian vegetation influences stream water chemistry through diverse processes including direct chemical uptake and indirect influences such as by supply of organic matter to soils and channels, modification of water movement, and stabilization of soil. Some processes are more strongly expressed under certain site conditions, such as denitrification where groundwater is shallow, and by certain kinds of vegetation, such as channel stabilization by large wood and nutrient uptake by faster-growing species. Whether stream chemistry can be managed effectively through deliberate selection and management of vegetation type, however, remains uncertain because few studies have been conducted on broad suites of processes that may include compensating or reinforcing interactions. Scant research has focused directly on the response of stream water chemistry to the loss of riparian vegetation or its restoration. Our analysis suggests that the level and time frame of a response to restoration depends strongly on the degree and time frame of vegetation loss. Legacy effects of past vegetation can continue to influence water quality for many years or decades and control the potential level and timing of water quality improvement after vegetation is restored. Through the collective action of many processes, vegetation exerts substantial influence over the well-documented effect that riparian zones have on stream water quality. However, the degree to which stream water quality can be managed through the management of riparian vegetation remains to be clarified. An understanding of the underlying processes is important for effectively using vegetation condition as an indicator of water quality protection and for accurately gauging prospects for water quality improvement through restoration of permanent vegetation.  相似文献   

    18.
    ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

    19.
    ABSTRACT: Baseflow augmentation refers to the temporary storage of subsurface water in floodplains, streambanks, and/or stream bottoms during the wet season, either by natural or artificial means, for later release during the dry season to increase the magnitude and permanence of low flows. Management strategies for baseflow augmentation fall into the following categories: (1) range management, (2) upland vegetation management, (3) riparian vegetation management, (4) upland runoff detention and retention, and (5) the use of instream structures. The benefits of a management strategy focused on baseflow augmentation are many, including: (1) increased summer flows, (2) healthier riparian areas, (3) increased channel and bank stability, (4) decreased erosion and sediment transport, (5) improved water quality, (6) enhanced fish and wildlife habitat, (7) lower stream temperatures, and (8) improved stream aesthetics. This review has shown that baseflow augmentation has been successfully accomplished in a few documented cases. Given its clear impact on soil and water conservation, particularly in the semiarid western U.S., it appears that baseflow augmentation is a concept whose time has come. Research is needed on how to successfully integrate baseflow augmentation within comprehensive resource management strategies.  相似文献   

    20.
    ABSTRACT: Channel instability and aquatic ecosystem degradation have been linked to watershed imperviousness in humid regions of the U.S. In an effort to provide a more process‐based linkage between observed thresholds of aquatic ecosystem degradation and urbanization, standard single event approaches (U.S. Geological Survey Flood Regression Equations and rational) and continuous hydrologic models (HSPF and CASC2D) were used to examine potential changes in flow regime associated with varying levels of watershed imperviousness. The predicted changes in flow parameters were then interpreted in concert with risk‐based models of channel form and instability. Although low levels of imperviousness (10 to 20 percent) clearly have the potential to destabilize streams, changes in discharge, and thus stream power, associated with increased impervious area are highly variable and dependent upon watershed‐specific conditions. In addition to the storage characteristics of the pre‐development watershed, the magnitude of change is sensitive to the connectivity and conveyance of impervious areas as well as the specific characteristics of the receiving channels. Different stream types are likely to exhibit varying degrees and types of instability, depending on entrenchment, relative erodibility of bed and banks, riparian condition, mode of sediment transport (bedload versus suspended load), and proximity to geomorphic thresholds. Nonetheless, simple risk‐based analyses of the potential impacts of land use change on aquatic ecosystems have the potential to redirect and improve the effectiveness of watershed management strategies by facilitating the identification of channels that may be most sensitive to changes in stream power.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号