首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
The rice-wheat belt comprises nearly 24–27 million ha in South and East Asia. Rice is generally grown in flooded fields whereas the ensuing wheat crop requires well-drained soil conditions. Consequently, both crops differ markedly in nature and intensity of greenhouse gas (GHG) fluxes, namely emission of (1) methane (CH4) and (2) nitrous oxide (N2O) as well as the sequestration of (3) carbon dioxide. Wetland rice emits large quantities of CH4; strategies to CH4 emissions include proper management of organic inputs, temporary (mid-season) field drainage and direct seeding. As for the wheat crop, the major GHG is N2O that is emitted in short-term pulses after fertilization, heavy rainfall and irrigation events. However, N2O is also emitted in larger quantities during fallow periods and during the rice crop as long as episodic irrigation or rainfall result in aerobic-anaerobic cycles. Wetland rice ensures a relatively high content of soil organic matter in the rice-wheat system as compared to permanent upland conditions. In terms of global warming potential, baseline emissions of the rice-wheat system primarily depend on the management practices during the rice crop while emissions from the wheat crop remain less sensitive to different management practices. The antagonism between CH4 and N2O emissions is a major impediment for devising effective mitigation strategies in rice-wheat system - measures to reduce the emission of one GHG often intensify the emission of the other GHG.  相似文献   

2.
Tripathi  Rahul  Dhal  B.  Shahid  Md  Barik  S. K.  Nayak  A. D.  Mondal  B.  Mohapatra  S. D.  Chatterjee  D.  Lal  B.  Gautam  Priyanka  Jambhulkar  N. N.  Fitton  Nuala  Smith  Pete  Dawson  T. P.  Shukla  A. K.  Nayak  A. K. 《Environment, Development and Sustainability》2021,23(8):11563-11582

A study was conducted to examine the interrelationships among socioeconomic factors, household consumption patterns, calorie intake and greenhouse gas emissions factors in rural eastern India based on household survey data. Findings indicated that higher monthly per capita incomes (12.1–80.1$) were associated with greater average calorie intakes (2021–2525 kcal d?1). As estimated by the FEEDME model, in total 17.2% of the population was calorie malnourished with a regional disparity of 29.4–18.2% malnourishment. Greenhouse gas (GHG) emissions were calculated only on the basis of crop and livestock production and consumption. Rice accounted for the highest share of total GHG emissions, on average 82.6% on a production basis, which varied from 58.1% to 94.9% in regional basis. Rice contributed the greatest share (~?65% and 66.2%) in terms of both calories and GHG emissions (CO2 eq y?1), respectively, on a consumption basis. We conclude that extensive rice farming and increasing animal product consumption are dominant factors in the higher carbon footprint in this region and are likely to further increase with increase in per capita income. This study provides useful information to help for better crop planning and for fine-tuning food access policy, to reduce carbon footprint and calorie malnutrition.

  相似文献   

3.
甲烷的全球变暖潜势是二氧化碳的72倍(20年水平),但其在大气中的寿命短于二氧化碳,可以作为优先减排对象。中国的甲烷排放十分突出,甲烷减排在应对气候变化国家战略中具有重要的基础性地位,然而在政策研究中,甲烷受到的关注程度远低于二氧化碳。本文基于甲烷排放研究的相关进展,首次系统性地论述了中国甲烷排放与应对气候变化国家战略之间的关系。主要结论是:甲烷排放的有效控制和减缓可以成为中国温室气体减排的重要组成部分,甲烷等温室气体的减排战略要用"系统减排"思路替代传统的"末端减排"思路;甲烷系统减排的策略和实施措施不仅需要重视主要排放部门(如煤炭开采与洗选业,农业)的直接末端减排,更需要突出强调建设活动、城市消费、资本投资和出口贸易等消费端的间接体现减排;在国际气候谈判中通过纳入甲烷排放,可以至少在五个方面丰富和支撑中国的国家立场,如从承诺"单位GDP二氧化碳减排"向承诺"单位GDP温室气体减排"转变。  相似文献   

4.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   

5.
江苏省交通运输业能源消费碳排放及脱钩效应   总被引:2,自引:0,他引:2  
通过自上而下的计算方法,测算了江苏省1995~2010年交通运输行业能源消费碳排放量和人均碳排放量,并结合行业自身发展特点,扩展了Kaya恒等式,运用LMDI分解法进行分解分析。同时,在上述基础上采用Tapio模型对江苏省交通碳排放与交通运输业经济发展的脱钩关系进行了探讨。研究发现:(1)江苏省交通碳排放量与人均碳排量均呈明显上升趋势,其中石油制品类能源消费碳排放表现突出;(2)正向驱动交通碳排放量增加的因素为经济产出、人口规模和产业结构,负向驱动因素为交通能源结构和交通能源强度。其中,拉动碳排放量增长的决定性因素是经济产出规模的扩大,而促使碳排放减少的主要因素是交通能源强度的降低,相对于正向驱动因素,负向驱动因素抑制交通碳排放增加作用有限;(3)交通碳排放量变化与运输业经济发展之间的脱钩状态以扩张负连接、扩张负脱钩和弱脱钩为主,脱钩关系总体呈先恶化后改善的趋势,但要完全实现两者的绝对脱钩,依然任重道远  相似文献   

6.
In this article we examine the technological feasibility of the global target of reducing GHG emissions to 50 % of the 1990 level by the year 2050. We also perform a detailed analysis of the contribution of low-carbon technologies to GHG emission reduction over mid- and long-term timeframes, and evaluate the required technological cost. For the analysis we use AIM/Enduse[Global], a techno-economic model for climate change mitigation policy assessment. The results show that a 50 % GHG emission reduction target is technically achievable. Yet achieving the target will require substantial emission mitigation efforts. The GHG emission reduction rate from the reference scenario stands at 23 % in 2020 and 73 % in 2050. The marginal abatement cost to achieve these emission reductions reaches 150/tCO < sub > 2 < /sub > -eq in 2020 and150/tCO2-eq in 2020 and 600/tCO2-eq in 2050. Renewable energy, fuel switching, and efficiency improvement in power generation account for 45 % of the total GHG emission reduction in 2020. Non-energy sectors, namely, fugitive emission, waste management, agriculture, and F-gases, account for 25 % of the total GHG emission reduction in 2020. CCS, solar power generation, wind power generation, biomass power generation, and biofuel together account for 64 % of the total GHG emission reduction in 2050. Additional investment in GHG abatement technologies for achieving the target reaches US6.0 trillion by 2020 and US 6.0 trillion by 2020 and US 73 trillion by 2050. This corresponds to 0.7 and 1.8 % of the world GDP, respectively, in the same periods. Non-Annex I regions account for 55 % of the total additional investment by 2050. In a sectoral breakdown, the power generation and transport sectors account for 56 and 30 % of the total additional investment by 2050, respectively.  相似文献   

7.
This study focuses on analyses of greenhouse gas (GHG) emission reductions, from the perspective of interrelationships among time points and countries, in order to seek effective reductions. We assessed GHG emission reduction potentials and costs in 2020 and 2030 by country and sector, using a GHG emission reduction-assessment model of high resolution regarding region and technology, and of high consistency with intertemporal, interregional, and intersectoral relationships. Global GHG emission reduction potentials relative to baseline emissions in 2020 are 8.4, 14.7, and 18.9 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 $/tCO2eq., corresponding to +19, −2, and −7 %, respectively, relative to 2005. The emission reduction potential for 2030 is greater than that for 2020, mainly because many energy supply and energy-intensive technologies have long lifetimes and more of the current key facilities will be extant in 2020 than in 2030. The emission reduction potentials in 2030 are 12.6, 22.0, and 26.6 GtCO2eq. at costs below 20, 50, and 100 /tCO2eq., corresponding to +33, +8, and −3 %, respectively, relative to 2005. Global emission reduction potentials at a cost below 50 $/tCO2eq. for nuclear power and carbon capture and storage are 2.3 and 2.2 GtCO2eq., respectively, relative to baseline emissions in 2030. Longer-term perspectives on GHG emission reductions toward 2030 will yield more cost-effective reduction scenarios for 2020 as well.  相似文献   

8.
Abstract

The increasing awareness of climate change has led organizations to demand a standard procedure to measure and communicate greenhouse gas (GHG) emissions linked to their products or services. The publicly available specification PAS 2050 has been developed in response to broad community and industry desire for a consistent method-carbon footprint for assessing the life cycle GHG emissions of goods and services. Specifically, this paper illustrates the implementation of carbon footprint for a baby stroller in accordance with PAS 2050. A fial value of 321 kg per one stroller including package was calculated. Moreover, the study led to identify raw materials production of the stroller as the main source of GHS emissions where efforts need to focus for emission reduction opportunities. This case study is hoped to be a starting point for organizations to benefit from the increasing application of carbon footprint assessment.  相似文献   

9.
城市是人类生产和生活的中心,超过75%的温室气体从城市产生,其中又以城市产业部门能源消费和工业过程非能源产生的CO2为主。本文基于投入产出模型,评价城市产业部门3个不同层次的CO2排放。以重庆为案例,核算其2002-2008年产业部门三个层次的CO2排放,包括能源消费直接排放、购买电力间接排放和全生命周期排放,并进行多层次对比。结果显示传统能源消耗和购买电力为对象的核算方法低估了产业部门CO2排放水平。2002-2008年,重庆各产业部门排放量逐年增加,碳排放强度整体呈现下降趋势。煤炭开采和洗选业、非金属矿采选业、非金属矿物制品业、电力、热力的生产和供应业,化学工业、金属冶炼及压延加工业、交通运输、仓储及邮电通讯业部门共7大行业是重庆碳排放的重点行业。部门交通设备制造业是重庆的优势产业,排放总量大,但是排放强度却相对较小,因此应大力发展该产业以促进重庆市低碳经济的发展。  相似文献   

10.
In 2010, the Renewable Energy Directive (RED) came into force in the EU and establishes a framework for achieving legally binding greenhouse gas (GHG) emission reductions. Only sustainable biofuels can be counted towards Member State targets. The aim of this paper is to calculate realistic and transparent scenario-based CO2-emission values for the GHG emissions savings of palm oil fuel compared with fossil fuel. Using the calculation scheme proposed by the RED, we derive a more realistic overall GHG emissions saving value for palm oil diesel by using current input and output data of biofuel production (e.g. in South-East Asia). We calculate different scenarios in which reliable data on the production conditions (and the regarding emission values during the production chain) of palm oil diesel are used. Our results indicate values for the GHG emissions savings potential of palm oil biodiesel not only above the 19 % default and 36 % typical value published in RED but also above the 35 % sustainable threshold. Our findings conclude the more accurate GHG emissions saving value for palm oil feedstock for electricity generation to be 52 %, and for transportation biodiesel between 38.5 and 41 %, depending on the fossil fuel comparator. Our results confirm the findings by other studies and challenge the official typical and default values published in RED. As a result, the reliability of the Directive to support the EU’s low-carbon ambitions is being undermined, exposing the EU and commission to charges of trade discrimination and limiting the ability of Member States to achieve their legally binding GHG emission reductions.  相似文献   

11.
Dairy feeding systems in many semi-arid countries are based on imported concentrates and forages. This has economic and ecological implications given the increase in global feed prices and greenhouse gas (GHG) emissions from land use change. This paper aims to explore alternative dairy feeding systems under semi-arid conditions, using Jordan as an example. The feedings systems under investigation vary in their share of food industry by-products (replacing concentrates in the diet) and are compared against the current concentrate-based feeding systems. The systems are evaluated against three criteria: their nutritional value, their impact on the cost of milk production, and their GHG mitigation potential. Feed samples from eleven food industry by-products and ten conventional feeds were collected from food factories and from three typical dairy farms, representing the typical large-, medium- and small-scale farm types, respectively. Feed samples were analysed for their chemical composition and metabolisable energy contents. In addition, economic and production farm data were collected and entered into a model for GHGs calculation and economic evaluation. The results suggest that inclusion of locally available food industry by-products in the rations of milk cows in semi-arid production systems can be instrumental in reducing production costs and mitigating GHG emissions. Cost of milk production in the model farms can be lowered by up to 14 %; mitigation of CO2 eq. emission ranged between 70 and 290 g CO2 eq./kg milk. The degree to which these benefits can be reaped is positively related to the level of inclusion of by-product feeds in lactating cows’ diets.  相似文献   

12.
为研究稳定浓度目标下温室气体排放路径的不确定性问题,应用温室气体导致气候变化评估模型( MAGICC模型)和WRE排放情景的数据对2100年温室气体浓度控制在450和550 ppmvCO2当量目标下的排放路径及浓度变化情况进行了研究.结果显示,目标年浓度的变化取决于起始年至目标年的累计排放量和摊放路径.将排放路径峰值逐渐调整滞后时,为保证累计排放量不变,需在到达峰值后比原排放路径进行更大力度的减排.温室气体浓度在预测期内将逐渐增加,但目标年的结果变化较小,约为浓度变化最大值的1/3左右.将WRE350和WRE450排放路径的峰值分别调整至2020年和2035年时,与原排放路径相比,浓度改变的最大值分别为6.4 ppmv和22.8 ppmv,而2100年浓度的改变值分别为1.9 ppmv和7.5 ppmv.  相似文献   

13.
The carbon emissions in service sectors have attracted increasing attention around the world. However, few studies have examined the driving forces for CO2 emissions from service sectors in developing countries. With the process of accelerating industrialization, China’s service sectors are facing growing pressure to pursue energy savings and emission reductions, especially in several developed regions. In this paper, in order to better understand how CO2 emissions in Beijing’s service sectors have evolved, we utilized a subsystem input–output decomposition analysis to study the pattern and driving factors of consumption-based emissions in Beijing’s service sectors. The results showed that the transportation sector and the Scientific Studies Technical Services sector caused the most CO2 emissions in Beijing’s service sectors. The emission intensity effect potentially reduced CO2 emissions by 10,833 Mt, primarily due to the decreased energy intensity of non-service sectors. Effects of demand and technology were mainly responsible for the increased CO2 emissions in Beijing’s service sectors. Such influence was mainly related to the external component of service sectors, indicating a strong pull effect exerted by service sectors on non-service sectors. Thus, decarbonizing the supply chain of service sectors and improving the energy intensity are necessary to alleviate CO2 emissions in Beijing.  相似文献   

14.
中国城市温室气体清单研究   总被引:3,自引:0,他引:3  
介绍城市温室气体排放特征和国际城市温室气体清单研究进展,研究了全球城市化和城市CO2排放的强正相关性,以及中国城市清单方法研究起步较早但发展缓慢的特点。分析了城市温室气体清单相对国家清单的特征,即城市清单编制往往采用消费模式,区别于国家清单的生产模式;国际城市清单中往往包括了由于外调电和供暖产生的CO2排放,同时城市温室气体清单编制灵活性和针对性更强。针对我国城市温室气体清单研究的不足,提出了我国城市温室气体清单方法,强调中国城市采用尺度1+尺度2的范围,暂不考虑尺度3的范围,即生产+消费的混合模式,并且在城市市域温室气体排放研究的基础上,加强狭义城市温室气体排放水平的研究。选择北京市和纽约市,对比分析了两个城市CO2排放特征,结果显示,在确定的清单体系下,北京市和纽约市具有较好的可比性。纽约市的总排放量(尺度1+尺度2)略低于北京市排放量,人均排放量略高于北京市。  相似文献   

15.
重庆市温室气体排放清单研究与核算   总被引:7,自引:0,他引:7  
城市化进程所带来的大量能源消费和温室气体排放已成为制约城市健康快速发展的瓶颈因素,亟需进行定量核算和分析。开展温室气体清单研究对节能减排和低碳城市建设具有重要的理论和实践意义。本文以重庆市为案例,通过清单方法分析主要温室气体排放源和碳汇,考虑主要能源活动、工业、废弃物处置、农业、畜牧业、湿地过程和林业碳汇,核算排放总量和强度,剖析重庆温室气体排放结构和现状。结果显示:1997-2008年重庆市温室气体排放总量呈现出上升趋势,2008年比1997年增长了2.31倍,其中增长幅度较大的是一次能源消费过程、外购电力和工业非能源过程。此外,随着温室气体排放量的增加,单位产值温室气体排放量却呈现下降的趋势,反映重庆市温室气体排放控制取得了一定效果。最后根据重庆市温室气体排放结果进行分析,提出了改变能源结构和工业结构、提高能效和加强"森林重庆"建设等政策建议,为重庆市转型低碳经济发展提供参考。  相似文献   

16.
Tropical soils are important sources and sinks of atmospheric methane (CH4) and major sources of oxides of nitrogen gases, nitrous oxide (NM2O) and NOx (NO+NO2). These gases are present in the atmosphere in trace amounts and are important to atmospheric chemistry and earth's radiative balance. Although nitric oxide (NO) does not directly contribute to the greenhouse effect by absorbing infrared radiation, it contributes to climate forcing through its role in photochemistry of hydroxyl radicals and ozone (O3) and plays a key role in air quality issues. Agricultural soils are a primary source of anthropogenic trace gas emissions, and the tropics and subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. The soil microbial processes responsible for the production and consumption of CH4 and production of N-oxides are the same in all parts of the globe, regardless of climate. Because of the ubiquitous nature of the basic enzymatic processes in the soil, the biological processes responsible for the production of NO, N2O and CH4, nitrification/denitrification and methanogenesis/methanotropy are discussed in general terms. Soil water content and nutrient availability are key controls for production, consumption and emission of these gases. Intensive studies of CH4 exchange in rice production systems made during the past decade reveal new insight. At the same time, there have been relatively few measurements of CH4, N2O or NOx fluxes in upland tropical crop production systems. There are even fewer studies in which simultaneous measurements of these gases are reported. Such measurements are necessary for determining total greenhouse gas emission budgets. While intensive agricultural systems are important global sources of N2O and CH4 recent studies are revealing that the impact of tropical land use change on trace gas emissions is not as great as first reports suggested. It is becoming apparent that although conversion of forests to grazing lands initially induces higher N-oxide emissions than observed from the primary forest, within a few years emissions of NO and N2O generally fall below those from the primary forest. On the other hand, CH4 oxidation is typically greatly reduced and grazing lands may even become net sources in situations where soil compaction from cattle traffic limits gas diffusion. Establishment of tree-based systems following slash-and-burn agriculture enhances N2O and NO emissions during and immediately following burning. These emissions soon decline to rates similar to those observed in secondary forest while CH4 consumption rates are slightly reduced. Conversion to intensive cropping systems, on the other hand, results in significant increases in N2O emissions, a loss of the CH4 sink, and a substantial increase in the global warming potential compared to the forest and tree-based systems. The increasing intensification of crop production in the tropics, in which N fertilization must increase for many crops to sustain production, will most certainly increase N-oxide emissions. The increase, however, may be on the same order as that expected in temperate crop production, thus smaller than some have predicted. In addition, increased attention to management of fertilizer and water may reduce trace gas emissions and simultaneously increase fertilizer use efficiency.  相似文献   

17.
Globally, more than 30 % of all food that is produced is ultimately lost and/or wasted through inefficiencies in the food supply chain. In the developed world this wastage is centred on the last stage in the supply chain; the end-consumer throwing away food that is purchased but not eaten. In contrast, in the developing world the bulk of lost food occurs in the early stages of the supply chain (production, harvesting and distribution). Excess food consumption is a similarly inefficient use of global agricultural production; with almost 1 billion people now classed as obese, 842 million people are suffering from chronic hunger. Given the magnitude of greenhouse gas emissions from the agricultural sector, strategies that reduce food loss and wastage, or address excess caloric consumption, have great potential as effective tools in global climate change mitigation. Here, we examine the challenges of robust quantification of food wastage and consumption inefficiencies, and their associated greenhouse gas emissions, along the supply chain. We find that the quality and quantity of data are highly variable within and between geographical regions, with the greatest range tending to be associated with developing nations. Estimation of production-phase GHG emissions for food wastage and excess consumption is found to be similarly challenging on a global scale, with use of IPCC default (Tier 1) emission factors for food production being required in many regions. Where robust food waste data and production-phase emission factors do exist—such as for the UK—we find that avoiding consumer-phase food waste can deliver significant up-stream reductions in GHG emissions from the agricultural sector. Eliminating consumer milk waste in the UK alone could mitigate up to 200 Gg CO2e year?1; scaled up globally, we estimate mitigation potential of over 25,000 Gg CO2e year?1.  相似文献   

18.
Multiple production and demand side measures are needed to improve food system sustainability. This study quantified the theoretical minimum agricultural land requirements to supply Western Europe with food in 2050 from its own land base, together with GHG emissions arising. Assuming that crop yield gaps in agriculture are closed, livestock production efficiencies increased and waste at all stages reduced, a range of food consumption scenarios were modelled each based on different ‘protein futures’. The scenarios were as follows: intensive and efficient livestock production using today’s species mix; intensive efficient poultry–dairy production; intensive efficient aquaculture–dairy; artificial meat and dairy; livestock on ‘ecological leftovers’ (livestock reared only on land unsuited to cropping, agricultural residues and food waste, with consumption capped at that level of availability); and a ‘plant-based eating’ scenario. For each scenario, ‘projected diet’ and ‘healthy diet’ variants were modelled. Finally, we quantified the theoretical maximum carbon sequestration potential from afforestation of spared agricultural land. Results indicate that land use could be cut by 14–86 % and GHG emissions reduced by up to approximately 90 %. The yearly carbon storage potential arising from spared agricultural land ranged from 90 to 700 Mt CO2 in 2050. The artificial meat and plant-based scenarios achieved the greatest land use and GHG reductions and the greatest carbon sequestration potential. The ‘ecological leftover’ scenario required the least cropland as compared with the other meat-containing scenarios, but all available pasture was used, and GHG emissions were higher if meat consumption was not capped at healthy levels.  相似文献   

19.
Livestock can contribute to climate change mitigation by reducing their greenhouse gas emissions and by increasing soil carbon sequestration. Packages of mitigation techniques can bring large environmental benefits as illustrated in six case studies modeled in the Global Livestock Environmental Assessment Model developed by FAO. With feasible technical interventions in livestock production systems, the mitigation potential of each of the selected species, systems and regions ranges from 14 to 41 %. While comparably high mitigation potentials were estimated for ruminant and pig production systems in Asia, Latin America and Africa, large emission reductions can also be attained in dairy systems with already high levels of productivity, in OECD countries. Mitigation interventions can lead to a concomitant reduction in emissions and increase in production, contributing to food security. This is particularly the case for improved feeding practices and better health and herd management practices. Livestock systems also have a significant potential for sequestrating carbon in pasturelands and rangelands through improved management, as illustrated in two of the six case studies in this paper.  相似文献   

20.
To analyze the motivations of Japanese companies to take environmental actions to reduce their greenhouse gas (GHG) emissions, we used FY2006 research data and questioned Japanese industries regarding their reduction of GHG emissions. Empirical investigations revealed that voluntary targets set by industry organizations, government requirements, and advance responses to possible future regulations can positively influence environmental actions for GHG emission reduction; however, cost reductions and corporate social responsibility fulfillment cannot.
Seiji IkkataiEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号