首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A national dataset on concentrations of mercury in fish, compiled mainly from state and federal monitoring programs, was used to evaluate trends in mercury (Hg) in fish from US rivers and lakes. Trends were analyzed on data aggregated by site and by state, using samples of the same fish species and tissue type, and using fish of similar lengths. Site-based trends were evaluated from 1969 to 2005, but focused on a subset of the data from 1969 to 1987. Data aggregated by state were used to evaluate trends in fish Hg concentrations from 1988 to 2005. In addition, the most recent Hg fish data (1996?C2005) were compared to wet Hg deposition data from the Mercury Deposition Network (MDN) over the same period. Downward trends in Hg concentrations in fish from data collected during 1969?C1987 exceeded upward trends by a ratio of 6 to 1. Declining Hg accumulation rates in sediment and peat cores reported by many studies during the 1970s and 1980s correspond with the period when the most downward trends in fish Hg concentrations occurred. Downward Hg trends in both sediment cores and fish were also consistent with the implementation of stricter regulatory controls of direct releases of Hg to the atmosphere and surface waters during the same period. The southeastern USA had more upward Hg trends in fish than other regions for both site and state aggregated data. Upward Hg trends in fish from the southeastern USA were associated with increases in wet deposition in the region and may be attributed to a greater influence of global atmospheric Hg emissions in the southeastern USA. No significant trends were found in 62% of the fish species from six states from 1996 to 2005. A lack of Hg trends in fish in the more recent data was consistent with the lack of trends in wet Hg deposition at MDN sites and with relatively constant global emissions during the same time period. Although few significant trends were observed in the more recent Hg concentrations in fish, it is anticipated that Hg concentrations in fish will respond to changes in atmospheric Hg deposition, however, the magnitude and timing of the response is uncertain.  相似文献   

2.
The main purpose for this study is to observe the seasonal and month variations for particulates-bound mercury Hg(p) in total suspended particulates (TSP) concentration, dry deposition at five characteristic sampling sites during years of 2009-2010 in central Taiwan. The results show that the highest and lowest monthly average particulates-bound mercury Hg(p) concentrations in TSP were occurred in Dec. and Oct. at Gao-mei (wetland), Chang-hua (downtown) and He-mei (residential) sampling site. In addition, the results show that the highest and lowest monthly average particulates-bound mercury Hg(p) dry deposition was occurred in Feb. and Oct. at Quan-xing (industrial) sampling site. This study reflected that the mean highest particulates-bound mercury Hg(p) concentrations in TSP and mean highest particulates-bound mercury Hg(p) dry deposition were occurred at Gao-mei (wetland) and Quan-xing (industrial). However, the mean lowest particulates-bound mercury Hg(p) concentrations in TSP and mean lowest particulates-bound mercury Hg(p) dry deposition were also occurred at Gao-mei (wetland). Regarding seasonal variation, the order of mean-particulates-bound mercury Hg(p) concentrations in TSP in winter and spring were Gao-mei (wetland) > Quan-xing (industrial) > Bei-shi (suburban/coastal) > Chang-hua (downtown) > He-mei (residential). Finally, the order of mean-particulates-bound mercury Hg(p) dry deposition in fall, spring and summer were Quan-xing (industrial) > Bei-shi (suburban/coastal) > Chang-hua (downtown) > He-mei (residential) > Gao-mei (wetland).  相似文献   

3.
In order to estimate wet deposition atmospheric fluxes of macro-nutrients into the eastern Mediterranean coastal waters, soluble inorganic phosphate (PO4(3-)), nitrate (NO3-) and nitrite (NO2-) concentrations in precipitation (from February 1996 to June 1997) have been measured at a coastal sampling site, Erdemli, Turkey. Water-soluble inorganic PO4(3)-P, a reactive, bioavailable, limiting macro-nutrient in the oligotrophic waters of the eastern Mediterranean was studied with respect to its contribution to biological productivity. Reactive PO4(3-)-P and NO2(-) + NO3(-)-N concentrations were found to be highly variable in rainwater samples. One of the aims of the study was to determine the contribution of dust transport to the soluble macro-nutrient budget of the eastern Mediterranean. No differences were found between the mean reactive P and NO(2-) + NO3(-)-N concentrations of "red rain" and normal rain events. Most likely as a result of low solubility of crustal phosphorus, dust episodes were not found to be important sources of reactive P, in terms of wet deposition. The annual wet deposition fluxes of reactive PO4(3-)-P and NO2(-) + NO3(-)-N into the Cilician Basin were respectively estimated to be 0.010 g P m(-2) per year and 0.23 g N m(-2) per year, which are comparable to the fluxes from land-based sources in the north-eastern Mediterranean. The incorporation of water soluble bioavailable PO4(3-)-P and NO2(-) + NO3(-)-N delivered via atmospheric wet deposition could be responsible for approximately 3.3% (0.40 g C m(-2) per year) and 11.0% (1.31 g C m(-2) per year) respectively, of the mean annual new production in the north-eastern Mediterranean.  相似文献   

4.
Mercury (Hg) records in natural archives such as peat bogs are often used to evaluate anthropogenic or climatic influences on atmospheric Hg deposition. In this context, there is an ongoing discussion about natural sources or processes of Hg enrichment in natural archives. In the present study we estimated Hg fluxes from rock weathering, direct atmospheric deposition and from indirect atmospheric deposition in the catchment of a pristine minerogenic fen (GC2) located in the Magellanic Moorlands, southernmost Chile. The Hg record in the bog covers 11 174 cal. (14)C years and shows Hg concentrations of up to 570 [micro sign]g kg(-1) with an average of 268 [micro sign]g kg(-1). Hg was found to be enriched in the peat by a factor of 81 if compared to the mean Hg concentrations in the rocks of the catchment (3.2 [micro sign]g kg(-1)). Hg and also Pb, Fe, and As were found to be enriched predominately in goethite layers indicating high retention of these elements in the bog by iron oxyhydrates. It could also be demonstrated that the high peat decomposition rates in minerogenic bogs can increase the Hg concentrations in the minerogenic peat by a factor of approximately 2 at the same atmospheric Hg deposition rate if compared to ombrotrophic sites. This study has shown that Hg in minerogenic peat can be naturally enriched especially through the retention by autochthonous formed goethite and can be a solely internal process which does not require increased external Hg fluxes.  相似文献   

5.
Lead levels in wet and dry deposition were determined within this project. A network of 10 sampling stations was established. The stations were located in areas characterized by heavy traffic volumes, but away from industrial and/or municipal pollution sources. It was assumed, therefore, that lead in the samples collected was coming primarily from automobile emissions. Measurements were carried out over a period of one year. Both rain and snow samples were collected. Lead concentrations in the samples ranged from 0.6 to 141 microg dm(-3). They depended on street topography, traffic volume, average speed of the vehicles, frequency of traffic congestion and atmospheric conditions. The highest lead levels in deposition were observed during the cold season.  相似文献   

6.
通过对新疆12个监测点氮沉降研究结果发现,无机活性氮浓度(p NH 4+、p NO 3-、NH 3、NO 2)在不同生态系统存在较大的时空差异,氮沉降通量变化随人为干扰程度呈递增趋势。总结了当前新疆大气氮沉降监测研究进展,包括主要监测方法、不同生态系统大气氮素干沉降的时空差异性分析、大气氮素干湿沉降通量估算。对大气氮素干湿沉降通量的整体估算、不同生态系统的监测常态化等还存在不足,未来评估氮沉降的综合气候效应、定量临界负荷以及生态系统对氮沉降通量急剧增加的响应是今后研究的重点方向。  相似文献   

7.
A 2-year monitoring study was conducted to estimate nitrogen deposition to a typical red soil forestland in southeastern China. The dry deposition velocities (V(d)) were estimated using big leaf resistance analogy model. Atmospheric nitrogen dry deposition was estimated by combing V(d) and nitrogen compounds concentrations, and the wet deposition was calculated via rainfall and nitrogen concentrations in rainwater. The total inorganic nitrogen deposition was 83.7 kg ha(-1) a(-1) in 2004 and 81.3 kg ha(-1) a(-1) in 2005, respectively. The dry deposition contributed 78.6% to total nitrogen deposition, in which ammonia was the predominant contributor that accounted for 86.1%. Reduced nitrogen compounds were the predominant contributors, accounting for 78.3% of total nitrogen deposition. The results suggested that atmospheric inorganic nitrogen could be attributed to intensive agricultural practices such as excessive nitrogen fertilization and livestock production. Therefore, impacts of atmospheric nitrogen originated from agriculture practices on nearby forest ecosystems should be evaluated.  相似文献   

8.
Trichloroacetic acid (TCA) and dichloroacetic acid (DCA) are possible minor atmospheric degradation products of perchloroethylene and trichloroethylene, respectively. These acids may be wet- or dry-deposited from the atmosphere to land surfaces and hence possibly affect plant growth. However, the existing database on TCA levels in soil is limited to a few studies carried out in the late 1980's and the early to mid-1990's and it was concluded that there is a need for further measurements of concentrations of TCA and DCA in soils. In this study soil samples from 10 locations in 5 European countries, as well as vegetation samples, and a limited number of rainwater and air samples were collected and analysed for DCA and TCA to determine the concentrations of these compounds. An isotope dilution method using GC-MS was used for the determination of these acids in the samples. The method was briefly validated and the performance characteristics are presented. The results of the analysis of the soil samples show that the DCA and TCA concentrations in soil from different sites in Europe are more or less comparable, with the exception of Germany, especially Freudenstadt, where significantly higher TCA concentrations (up to 12 microg kg(-1) dw) were found. The average DCA and TCA concentrations in soil in this study were 0.25 +/- 0.12 and 0.64 +/- 1.40 microg kg(-1) dw, respectively. Generally, the concentration in soils from forest areas are about twice those from open-land areas. The DCA and TCA concentrations in vegetation samples ranged from 2.1 to 73 microg kg(-1) dw for DCA and from 4.7 to 17 microg kg(-1) dw for TCA. Thus, the concentrations in vegetation samples are 10-20 times higher than the soil concentrations. DCA and TCA concentrations in wet deposition samples and air samples collected in The Netherlands were 0.14 and 0.15 microg l(-1) for wet deposition samples and <0.5 and 0.7 ng m(-3) for air samples respectively. For these samples taken in The Netherlands, the estimated values for soil and air concentrations calculated from the wet deposition concentrations are in agreement with the concentrations measured in this study.  相似文献   

9.
As part of the Lake Champlain Basin watershed study of mercury (Hg) and pollutant deposition, cloud water and cloud throughfall collections were conducted at the south summit (1204 m) of Mt. Mansfield, Vermont between August 1 and October 31, 1998, for multi-element chemical analysis. A passive Teflon string collector was deployed during non-precipitating events to sample cloud/fog water at timberline, while three sets of paired funnels collected cloud throughfall under the red spruce-balsam fir canopy. Samples were analyzed for concentrations of Hg, major ions, and 10 trace elements. Ultra-clean sampling and analysis techniques were utilized throughout the study. Six events were sampled for cloud water alone and four events were sampled for both cloud water and cloud throughfall. Cloud throughfall chemistry showed substantial modification from incident cloud water. Much higher concentrations of Hg (2.3 x), base cations (Ca2+, K-, Mg2+; 3-18 x) and certain trace elements (Ni, Cu, Mn, Rb, Sr; 2-34 x) were observed in throughfall than in cloud water. These results confirm that cloud water can leach a wide variety of elements from tree foliage and wash off dry deposited elements. Cloud water deposited an average of 0.42 +/- 0.12 mm of water per hour. Estimated cloud water deposition of Hg was 7.4 microg m(-2) for the period August 1-October 31, approximately twice that deposited by rain during this period at a nearby low elevation Hg monitoring site. Our results indicate that cloud water and Hg deposition at Mt. Mansfield are likely to have considerable ecological effects.  相似文献   

10.
This paper considers the spatial and temporal variability in concentrations of the potentially acidifying ions in precipitation in Lithuania during the 1981-2004 period. Chemical analysis of precipitation included measurements of pH, conductivity, sulfate (SO4(2-)), nitrate (NO3-), chloride (Cl-), ammonium (NH4+), sodium (Na+), potassium (K+), and calcium (Ca2+). Temporal trends in the potentially acidifying ion concentrations in precipitation and wet deposition were evaluated using the non-parametric Mann-Kendall test and Sen's slope estimator. A statistically significant decline was observed in non-sea salt sulfate (nssSO4(2-)) and hydrogen (H+) ions concentrations (82% and 79%, respectively) and wet depositions (88% and 74%, respectively). Temporal trends both in concentration and wet deposition of nitrate and ammonium were not as pronounced as trends in sulfate concentration. Analysis of air mass backward trajectories was applied to reveal the influence of air mass originating in different regions on wet deposition of acidifying species in Lithuania. Sector analysis clearly showed that wet deposition of sulfur and nitrogen in Lithuania is to a large extent anthropogenic and the main source regions of acidifying species contributing to wet deposition in Lithuania are in South and Central Europe.  相似文献   

11.
In order to investigate the spatial and temporal variability of atmospheric mercury (Hg) in Chongqing, China, gaseous elemental mercury (GEM) was measured from August 2006 to September 2007, using Lumex multifunctional mercury analyzer RA-915(+) (Lumex Ltd., Russia). The mean GEM concentration was 6.74 +/- 0.37 ng m(-3) in Chongqing, much higher than the accepted global background values (1.5-2 ng m(-3)). The GEM concentrations were different in different function areas. GEM in transport, industrial and commercial areas were 7.07 +/- 1.04, 7.05 +/- 0.96 and 6.71 +/- 1.10 ng m(-3), respectively, while GEM was 6.14 +/- 1.30 and 4.32 +/- 1.04 in the educational/recreational and nature conservation areas, suggesting that Hg emissions from mobile vehicles and industrial sources (specially coal combustion) were the most important contributors to atmospheric Hg in Chongqing. Mean Hg concentrations also had monthly variations with highest in November (8.24 +/- 0.50 ng m(-3)) and lowest values in August (5.36 +/- 0.70 ng m(-3)). Additionally, the diurnal variation of GEM concentrations was dependent on the local/regional atmospheric conditions. At Jinyun Mountain site (natural conservation area), hourly GEM concentrations had much higher values in daytime than at night. At Power Plant site, however, the hourly GEM concentrations were lower in daytime than at night. GEM concentrations in the air were correlated significantly with meteorological parameters except for barometric pressure.  相似文献   

12.
Atmospheric inputs of reactive nitrogen (N) to ecosystems are a particular concern in the northeastern USA, including New York State, where rates of atmospheric N deposition are among the highest in the nation. We calculate the seasonal and annual spatial variations of contemporary inorganic atmospheric N deposition loading to multi-scale watersheds across New York State using numerous monitoring datasets of precipitation and ambient atmospheric N concentrations. Our models build upon and refine previous efforts estimating the spatial distribution of N deposition. Estimates of total inorganic wet deposition (NH4-N + NO3-N) across New York ranged from 4.7 to 10.5 kg ha(-1) yr(-1) under contemporary conditions (averaged 2002-2004), and both seasonal and annual predicted rates of inorganic N deposition (NH4-N, NO3-N, and total) fit relatively well with that of observed measurements. Our results suggest that "hot spots" of N deposition are, for the most part, spatially distributed according to geographic positions (i.e., relative location from sources and the Great Lakes system) and elevation. We also detect seasonal variations in deposition, showing that total wet atmospheric inorganic N deposition inputs to watersheds (extracted from the four-digit HUC calculations) are highest during the spring (mean = 2.4 kg ha(-1), stddev = 0.29) and lowest during the winter months (mean = 1.4 kg ha(-1), stddev = 0.23). Results also suggest that wet NO3(-) consistently comprises a slightly higher proportion of wet N deposition than wet NH4+ throughout watersheds of New York, ranging from 2.5 to 6.1 kg NO3-N ha(-1) yr(-1) compared to NH4+, which ranges from 2.2 to 4.4 kg NH4-N ha(-1) yr(-1).  相似文献   

13.
This study was performed to elucidate the distribution, concentration trend and possible sources of total mercury (Hg(T)) and methylmercury (MeHg) in sediment cores (<63 μm particle size; n?=?75) of Sundarban mangrove wetland, northeastern part of the Bay of Bengal, India. Total mercury was determined by atomic absorption spectrometry (AAS) in a Leco AMA 254 instrument and MeHg by gas chromatography-atomic fluorescence spectrometry (GC-AFS). A wide range of variation in Hg(T) (0.032-0.196 μg g(-1) dry wt.) as well as MeHg (0.04-0.13 ng g(-1) dry wt.) concentrations revealed a slight local contamination. The prevalent low Hg(T) levels in sediments could be explained by sediment transport by the tidal Hugli (Ganges) River that would dilute the Hg(T) values via sediment mixing processes. A broader variation of MeHg proportions (%) were also observed in samples suggesting that other environmental variables such as organic carbon and microbial activity may play a major role in the methylation process. An overall elevated concentration of Hg(T) in surface layers (0-4 cm) of the core is due to remobilization of mercury from deeper sediments. Based on the index of geoaccumulation (I (geo)) and low effects-range (ER-L) values, it is considered that the sediment is less polluted by Hg(T) and there is less ecotoxicological risk. The paper provides the first information of MeHg in sediments from this wetland environment and the authors strongly recommend further examination of Hg(T) fluxes for the development of a detailed coastal MeHg model. This could provide more refine estimates of a total flux into the water column.  相似文献   

14.
The potential for airborne emissions to undergo long-range transport or to be removed from the atmosphere is influenced by their physical-chemical properties. When perfluorooctanate (PFO) enters the environment, its physical-chemical properties can vary significantly, depending on whether it exists as an acid, a salt, or a dissociated ion. A summary of the physical-chemical properties of the three most likely environmental states: ammonium perfluorooctanoate (APFO), perfluorooctanoic acid (PFOA) and the dissociated perfluorooctanoate anion (PFO(-)) is presented to illustrate the distinct environmental properties of each. The most volatile species, PFOA, is shown to have a pH-dependent air-water partitioning coefficient (K(aw)). The variability of K(aw) with pH influences the potential for vapor formation from aqueous environments, including rain events. Using the pH-dependent K(aw) and measured rain and air concentrations, it is shown that vapor-phase PFOA is not likely to be present above measurable levels of 0.2 ng m(-3) (12 parts per quadrillion v/v) during a rain event. Because rain concentrations determined in this work are comparable to measurements in other parts of North America, it is unlikely that rain events are a significant source of vapor-phase PFOA for the general North American region. It is shown that PFOA exists primarily in the particle phase in ambient air near direct sources of emissions and is efficiently scavenged by rain droplets, making wet deposition an important removal mechanism for emissions originating as either PFOA or APFO. Washout ratios of particle-associated PFO were determined to range between 1 x 10(5) and 5 x 10(5), in the same range as other semi-volatile compounds for which wet deposition is an important mechanism for atmospheric removal and deposition onto soils and water bodies.  相似文献   

15.
Based on the method of moss bags, atmospheric deposition of heavy metals including Hg, Cu, Pb, Zn, and Ni was investigated using three kinds of mosses, i.e., Bazzania yoshinagana (Steph.) Steph. ex Yasuda, Dicranum nipponense Besch., and Brotherella (Duby) Fleisch, with reference to the monitoring in five sites, i.e., Jiulongpo District (JLPD), Nanan District (NAD), Jiangbei District (JBD), Beibei District (BBD), and Jinyun Mountain (JYM), in Chongqing, China. The results showed that atmospheric deposition of heavy metals in Chongqing was significantly much higher than the control site (JYM). Among the sites, JLPD, the main industrial area in Chongqing, was more seriously polluted due to the more discharge of waste gas, compared to BBD, NAD, and JBD. The atmospheric deposition of heavy metals had a trend that dry deposition (60-65%) was larger than wet deposition (35-40%) due to the climate nature in Chongqing. According to the results of principal component analysis, the five monitoring districts could be divided into three groups: (1) unpolluted: JYM; (2) light polluted: JBD, NAD, and BBD; (3) heavy polluted: JLPD. The characteristics of bryophyte could put some effects on its accumulation of atmospheric heavy metals, e.g., Brotherella (Duby) Fleisch, the one with highest abundance of branches and leaves in the three bryophyte species, could accumulate more metals than other two species according to the monitoring results.  相似文献   

16.
Peat cores from three bogs in southern Ontario provide a complete, quantitative record of net rates of atmospheric Hg accumulation since pre-industrial times. For comparison with modern values, a peat core extending back 8000 years was used to quantify the natural variations in Hg fluxes for this region, and their dependence on climatic change and land use history. The net mercury accumulation rates were separated into "natural" and "excess" components by comparing the Hg/Br ratios of modern samples with the long-term, pre-anthropogenic average Hg/Br. The average background mercury accumulation rate during the pre-anthropogenic period (from 5700 years BC to 1470 AD) was 1.4 +/- 1.0 microg m(-2) per year (n = 197). The beginning of Hg contamination from anthropogenic sources dates from AD 1475 at the Luther Bog, corresponding to biomass burning for agricultural activities by Native North Americans. During the late 17th and 18th centuries, deposition of anthropogenic Hg was at least equal to that of Hg from natural sources. Anthropogenic inputs of Hg to the bogs have dominated continuously since the beginning of the 19th century. The maximum Hg accumulation rates decrease in the order Sifton Bog, in the City of London, Ontario (141 microg Hg m(-2) per year), Luther Bog in an agricultural region (89 microg Hg m(-2) per year), and Spruce Bog which is in a comparatively remote, forested region (54 microg Hg m(-2) per year). Accurate age dating of recent peat samples using the bomb pulse curve of 14C shows that the maximum rate of atmospheric Hg accumulation occurred during AD 1956 and 1959 at all sites. In these (modern) samples, the Hg concentration profiles resemble those of Pb, an element which is known to be immobile in peat bogs. The correlation between these two metals, together with sulfur, suggests that the predominant anthropogenic source of Hg (and Pb) was coal burning. While Hg accumulation rates have gone into strong decline since the late 1950's, Hg deposition rates today still exceed the average natural background values by 7 to 13 times.  相似文献   

17.
Total mercury (Hg) concentrations were determined in seven tissues (skeletal muscle, liver, blood, gonad, brain, gill, and heart) of 59 striped bass and four tissues (muscle, liver, blood, and gonad) of 69 largemouth bass, 76 channel catfish, 12 bluegill, and 22 blue tilapia collected from Lake Mead, USA. Mercury levels generally increased according to trophic level and fish length. For striped bass, mean Hg levels (ng g(-1), wet mass) were highest in the liver (531), followed by muscle (309), heart (186), gonad (136), brain (77), gill (52), and blood (36). Similarly, Hg levels in the catfish and tilapia were liver > muscle > gonad > blood. In contrast, largemouth bass and bluegill had the highest levels in muscle, followed by liver, gonad, and blood. Generally, Hg levels were strongly correlated among the tissues, especially for blood/muscle and blood/liver. As the body burden of Hg increased, the concentration in blood and organs increased relative to the concentration in muscle. The trend was most pronounced for the liver. These relationships could form the basis of a predictive model and suggest that blood and muscle (plugs) could be useful for a non-lethal measure of Hg concentration and exposure in fish. For the striped bass, elevated Hg levels in the tissues were also correlated with degree of emaciation. Liver-to-muscle ratios were similar to literature values, except for tilapia with an average ratio of approximately 1.7, which is higher than generally reported for non-piscivores. Finally, this study demonstrates the usefulness of a solid sampling approach in trace element monitoring, especially as pertaining to in vivo analysis, analysis of a large number of samples and reduction of contamination risk.  相似文献   

18.
Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00?±?1.28 ng Hg(II)?g?1 and 0.15?±?0.08 ng MeHg g?1 wet weight (phytoplankton) and 2.5?±?2.03 ng Hg(II)?g?1 and 0.25?±?0.09 ng MeHg g?1 wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.  相似文献   

19.
The lack of high quality measurements of Hg and trace elements in cloud and fog water led to the design of a new collector for clean sequential sampling of cloud and fog water. Cloud water was collected during nine non-precipitating cloud events on Mt. Mansfield, VT in the northeastern USA between August 1 and October 31, 1998. Sequential samples were collected during six of these events. Mercury cloud water concentrations ranged from 7.5 to 71.8 ng l(-1), with a mean of 24.8 ng l(-1). Liquid water content explained about 60% of the variability in Hg cloud concentrations. Highest Hg cloud water concentrations were found to be associated with transport from the Mid-Atlantic and Ohio River Valley, and lowest concentrations with transport from the north of Mt. Mansfield out of Canada. Twenty-nine event precipitation samples were collected during the ten-week cloud sampling period near the base of Mt. Mansfield as part of a long-term deposition study. The Hg concentrations of cloud water were similar to, but higher on average (median of 12.5 ng l(-1)) than Hg precipitation concentrations (median of 10.5 ng l(-1)). Cloud and precipitation samples were analyzed for fifteen trace elements including Mg, Cu, Zn, As, Cd and Pb by ICP-MS. Mean concentrations were higher in cloud water than precipitation for elements with predominately anthropogenic, but not crustal origin in samples from the same source region. One possible explanation is greater in-cloud scavenging of crustal elements in precipitating than non-precipitating clouds, and greater below-cloud scavenging of crustal than anthropogenic aerosols.  相似文献   

20.
This study investigates the quality of stormwater runoff from a driveway in the southwest mountainous urban area of Chongqing, China, from 2010 to 2011. The results showed that the mean concentrations of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were 4.1, 2.4, and 2.2 times the grade V levels of the national surface water standard of China. The pollutant concentration peak preceded or synchronized with the rainfall intensity peak and occurred 10 min after the runoff started. The significant high pollutant concentration in the initial stage of the rainfall suggested that first flush control is necessary, especially for the most polluted constitutes, such as total suspended solids, COD, and TN. Three potential pollution sources were identified: the atmospheric dry and wet deposition (TN, NO3 ?-N, NH4 +-N, and DCu), the road sediment and materials (total suspended solids, COD, and TP), and the vehicle emissions (DPb and DZn). Therefore, this study indicates that reductions in road sediments and material pollution and dry and wet deposition should be the priority factors for pollution control of road stormwater runoff in mountainous urban areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号