首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
本文根据1983年从东单、北辛安、怀柔定期观测的结果,对颗粒物及Al、Ca、Cu、Fe、K、Mg、Mn、Pb、S、Ti、Zn的浓度频数分布类型进行检验。结果表明,它们的分布类型在这三个地点有些差异,但是,大多数元素浓度呈对数正态(或偏态)分布。依据分布类型,计算了这三个地点的颗粒物及元素浓度的平均值。对呈正态分布,采用算术平均值。呈对数正态分布,用几何平均值,对数正态分布以外的偏态分布经正态化处理后计算平均值表示。  相似文献   

2.
于2006年至2007年在台州电子垃圾拆解区和市区对照点采集了不同季节的大气细颗粒物样品,利用离子色谱对颗粒物中氯离子(Cl-)、硝酸根(NO3-)、硫酸根(SO42-)、草酸根(C2O42-)、钠离子(Na+)、铵离子(NH4+)、钾离子(K+)、钙离子(ca2+)、镁离子(Mg2+)等水溶性离子进行r分析.结果表明...  相似文献   

3.
环境大气中重金属元素通常存在于细颗粒物(PM_(2.5))中,对人体健康和生态环境具有潜在威胁.开展大气中重金属的监测对评估其环境健康影响以及针对性控制措施的制定具有重要科学意义和现实意义.本文对北京市怀柔区大气中20种重金属元素于2016年1月19日至3月4日进行了连续现场监测,并分析了大气重金属的污染现状、特征及来源.观测期间大气平均总重金属浓度为0.52μg·m~(-3),约占PM_(2.5)平均浓度(70.3μg·m~(-3)的0.75%,其中以Fe、Zn、Ba、Pb、Mn、Cu、Cd、As浓度较高;在2月8日(大年初一)烟花爆竹燃放高峰期间大气颗粒物中重金属元素浓度明显升高,总重金属浓度最高可达7.94μg·m~(-3),占PM_(2.5)的比例为9%,尤其以Ba、Pb、Cu、Zn、Mn、Cr浓度增长最为突出.以Fe作为地壳参比元素,发现怀柔冬季大气中Ni、Mn、Ga、Cr的富集因子小于10,其它元素的富集因子大于10,表明怀柔冬季大气中Ni、Mn、Ga、Cr主要来源于土壤或岩石风化,其它元素则主要来自人为污染源排放.基于怀柔冬季大气中不同重金属变化特征分析,推测Pb、Zn、Hg、Mn、Ni、Se与As共同来源于冬季燃煤采暖以及周围工业园区煤炭燃料燃烧排放,Cu、Pb、Cr、Zn、Mn和Ba主要来源于烟花爆竹燃放,Cd等元素来源于周围工业园区的工业生产过程.  相似文献   

4.
大气颗粒物暴露与健康效应研究进展   总被引:10,自引:0,他引:10  
大气颗粒物一直是影响我国大多数城市空气质量的首要污染物,且呈现出与欧美不同的煤烟、机动车尾气以及开放源复合型污染并存的高浓度污染态势,已有研究发现颗粒物的短期或长期暴露均会对人体产生不良的健康效应。本文从环境科学、暴露科学、环境流行病学和环境毒理学研究等方面系统综述了大气颗粒物健康效应研究的方法和进展,可为我国的大气颗粒物健康效应研究与大气颗粒物环境质量标准的修订提供方法学参考和经验借鉴。目前我国PM10污染尚未得到有效控制,细颗粒物(PM2.5)的污染也已引起关注,建议在不同区域开展空气污染健康效应的系统研究。  相似文献   

5.
于1980年9月与12月用直升飞机采集了天津200—3000米上空不同垂直高度及地面、市区、郊区、海面等六个区域中大气颗粒物和SO_2的样品。用多道粒子计数器测定了粒子数。分析了颗粒物中十余种无机元素,获得了不同垂直高度与各地区的浓度分布与元素(重量比)的分布特征、季节差别。还阐明了不同高度粒子数的分布规律。  相似文献   

6.
天津是煤烟型污染的城市,大气颗粒物污染全年超标.由于颗粒物来源的多样性,不同粒径颗粒物的化学组成也存在较大差异.据报道,对人体有害的痕量元素及有机污染物大都集中在粒径较小的颗粒物上.因此,研究细粒径大气颗粒物(<10μm)的化学组成及其污染来源,以期有的放矢、科学地进行防治,有着十分重要的现实意义.  相似文献   

7.
选取太原市城区10个监测点2014—2016年PM_(10)和PM_(2.5)日变化数据,分析和探讨了其时空变化特征,及其与人类经济活动的同步性规律;采用小波连续变换的功率谱方法识别颗粒物周期变化特征,采用可视化主成分分析法识别不同时间尺度下颗粒物变化的影响因素。结果表明,太原市大气颗粒污染物PM_(10)和PM_(2.5)质量浓度的变化存在明显的时空差异,新兴经济发展区较传统老工业区污染严重,颗粒物污染程度在冬季较为严重。小波分析结果显示,PM_(10)和PM_(2.5)时间序列的变化周期均以4~8 d的短周期为主(P0.05),污染物的质量浓度变化与城市经济活动的周波动变化相一致;PM_(10)和PM_(2.5)质量浓度最大值出现在周波动的中间时段,最小值出现在周末。可视化PCA结果揭示,大气颗粒物PM_(10)和PM_(2.5)季节性波动均受冬季影响较强;周波动周期内均受周三影响最大;一天之内PM_(10)和PM_(2.5)质量浓度分别受夜晚和早晨影响最大,但白天颗粒物质量浓度变化是造成其日变化特征的主要因素。研究结果有利于从不同时间尺度辨析能源城市大气颗粒物污染的多变特征,有针对性地开展大气污染防控,也可为管理部门制定相关标准和规范提供科学依据。  相似文献   

8.
北京市秋季大气颗粒物的污染特征研究   总被引:22,自引:0,他引:22  
大气颗粒物是造成城市空气污染的重要原因之一,并已经成为我国北京等大中城市空气污染中的首要污染。为了分析北京市大气细颗粒物的污染水平及其影响因素,以大气中的PM10和PM2.5为研究对象,于2005年秋季在北京市设立了9个采样点进行采样监测,通过对所采集到的PM10和PM2.5质量浓度的对比来分析大气颗粒物的空间分布和时间变化特征,并建立起PM10和PM2.5质量浓度与风力、温度、湿度等气象条件的对应关系来分析各种气象因素对大气细颗粒物污染水平的影响。结果表明:北京市不同区域的PM10和PM2.5的质量浓度差异较大,同时,值得注意的是通过对同一地点同一采样时间大气颗粒物质量浓度的对比发现PM2.5质量浓度的空间分布并不完全同于PM10,这主要是与采样点所处的环境中不同污染源影响的强弱有关;气象条件稳定时,PM10和PM2.5质量浓度的日变化表现出一定的规律性,这种时间变化的特征主要取决于所在环境中排放的污染物变化情况;气象条件是影响PM10和PM2.5污染程度的重要因素,在一定的范围内,颗粒物质量浓度随着温度的上升而下降,随着相对湿度的升高而增大,随着风力的增强而减小。  相似文献   

9.
利用2004年乌鲁木齐城区(以天山区为例)PM10日平均浓度和气象要素观测资料,对不同季节PM10浓度变化特征、不同级别污染日数进行统计分析.同时,结合环境扫描电镜/X射线能谱(ESEM-EDX)对不同季节的颗粒物的形貌及来源进行了初步探讨。结果表明2004年PM10浓度变化为:冬季>秋季>春季>夏季;冬季出现4级以上污染日数最多,占39.5%;夏季最为洁净,好于2级的日数占到76.1%.PM10和气象因子的相关分析表明浓度与风速成正比,与降水成反比,与温度,相对湿度和逆温层厚度相关比较复杂,有时成正相关,有时呈负相关。颗粒物的形貌在不同季节特征明显,冬季颗粒物多呈圆球形,春季形貌不规则,夏季既有圆球形又有不规则形貌的颗粒,而秋季颗粒物多呈链状.  相似文献   

10.
为了研究林地和湿地以及气象因素等对于大气颗粒物浓度的影响,于2016年5—12月在北京市奥林匹克森林公园内林地、湿地内对PM10和PM_(2.5)质量浓度以及气象数据(温度和相对湿度)进行采集。使用定量分析的方法,运用阻滞-吸附效率公式对林地和湿地阻滞率进行了比较;分析了大气不同污染背景下林地和湿地对大气颗粒物阻滞率的差异以及气象因子对大气颗粒物质量浓度的影响。研究结果表明,林地内颗粒物日变化呈现先下降后上升的趋势,13:00左右为一天之中质量浓度最低(34.6μg?m~(-3))之时,而湿地周围颗粒物日变化则在采样期间呈现下降趋势,至18:00左右质量浓度为最低(35.8μg?m~(-3))。不同空气质量等级下,林地和湿地对颗粒物的阻滞率效果不同,林地在空气质量为优时对PM_(10)和PM_(2.5)的阻滞率均最高,分别为522.7%和289.7%;湿地在空气质量等级为良时对PM_(10)的阻滞率最高(56.56%),在空气质量为重度污染时对PM_(2.5)的阻滞率为最高(74.35%)。在相同空气质量等级下,林地与湿地之间的阻滞率也存在差异:除严重污染时没有显著差异外,其余空气质量等级下林地的阻滞率显著高于湿地对大气颗粒物的阻滞率(P0.05)。此外,大气颗粒物质量浓度与气象因子之间存在显著相关性,其质量浓度与温度呈负相关,与相对湿度呈正相关。然而,阻滞率与气象因子之间没有显著相关性。研究林地与湿地的阻滞率有利于更好地配置城市中林地和湿地比率,以更加有效地改善大气环境。  相似文献   

11.
西安市大气颗粒物中水溶性无机离子的季节变化特征   总被引:18,自引:0,他引:18  
用离子色谱法对11种无机水溶性离子(Na+,NH4+,K+,Mg2+,Ca2+,F-,Cl-,Br-,NO-2,NO-3和SO2-4)进行分析,探讨大气颗粒物中水溶性无机组分的季节变化与典型污染(灰霾、浮尘、燃烧秸秆和燃放烟花)的理化特性.结果表明,西安市大气中PM2.5和TSP的日均质量浓度分别为167.1和382.0μg·m-3,PM2.5占TSP总质量浓度的44%.PM2.5和TSP中无机水溶性离子组分的年均值分别为75.2μg·m-3和101.7μg·m-3.PM2.5中水溶性离子组分占PM2.5总质量浓度的45%左右,TSP中水溶性离子组分占TSP总质量浓度的30%左右.各种水溶性离子的来源和形成机理不同,其季节变化趋势和粒径分布也不同.典型污染事件期间,颗粒物污染特征与平时相比有很大差异:雾霾时PM2.5和TSP的质量浓度都显著增加,主要污染组分为二次污染离子NH+4,NO-3和SO2-4;浮尘发生时,大气颗粒物中人为污染组分会大大减少,而来自沙尘传输和地面扬尘等的地壳物质显著增加;燃烧秸秆对大气颗粒物中K+和Cl-的影响最大;燃放烟花时K+,Mg2+和Ca2+的质量浓度显著增加.  相似文献   

12.
中国大气颗粒物中金属元素环境地球化学行为研究   总被引:13,自引:0,他引:13  
方凤满 《生态环境》2010,19(4):979-984
大气颗粒物金属污染已成为目前大气污染的研究热点之一。文章梳理、分析归纳了中国近年来大气颗粒中金属元素的环境地球化学方面的研究。目前研究较多的是Fe、Ca、Mg、Si等地壳元素和Cu、Pb、Cd、Zn、Hg等污染元素;大气颗粒物中对人体有害的Cu、Pb、Cd、As、Zn等污染较严重,而Cr、Mn、Co、Ni等污染较轻。大气颗粒物中金属含量随时间分布变化显著,总体上呈现冬季〉秋季〉春季〉夏季的特点,空间分布上一般北方燃煤城市大于南方一般城市;城市内部一般工业区〉交通区〉居民区〉郊区;金属元素在细粒径颗粒(〈2μm)中高,粗颗粒(〉2μm)中低,尤其以污染元素明显。污染元素与地壳元素的垂直分布规律差异较大。大气颗粒物中金属元素的富集程度与元素种类、区域类型、季节变化、粒径大小等有关。最后,提出应加强大气颗粒物中金属元素空间分布差异、时间分布的尺度及差异性研究;同时加强超细颗粒物的研究,以便建立大气颗粒物金属元素与人类健康关系的风险模型。  相似文献   

13.
北京大气颗粒物与地面土中元素的污染及来源初探   总被引:4,自引:1,他引:3  
1981年在北京七个地点按季度采集了大气颗粒物及地面土的样品。用x射线荧光光谱及原子吸收光谱分析了17种元素。用富集因子法处理数据所得结果表明:在北京通常气候条件下,大气颗粒物中的壤土主要来自当地的地面土。在某些采样点的地面土中有人为污染元素的影响,如Cu,Pb、Zn、Mn等,它们对该地颗粒物亦有一定的贡献。  相似文献   

14.
植物叶片对不同粒径颗粒物的吸附效果研究   总被引:2,自引:0,他引:2  
在中国北方雾霾天气日益严重的今天,植物通过吸附大气中的颗粒物进而减缓颗粒物污染情况。为研究植物叶片对不同粒径颗粒物的吸附能力,通过对同一区域内的城市道路和校园绿地上的大叶黄杨(Buxus megistophylla)、洋白蜡(Fraxinus pennsylvanica)和毛白杨(Populus tomentosa)进行研究,测定其叶表面和蜡质层对大气中粒径为10~100、2.5~10和0.2~2.5μm的颗粒物的单位叶面积吸附量。研究结果表明:不同植物叶片吸附颗粒物能力差异显著,3种植物中大叶黄杨吸附颗粒物的能力最强,毛白杨与洋白蜡吸附颗粒物的能力相近,洋白蜡叶表面易到达最大饱和滞尘量;道路上的植物叶片吸附颗粒物总量高于校园内的植物,两者滞尘量的差异主要体现在吸附10~100μm粒径的颗粒物上,局地环境会影响叶片滞尘量;不同植物叶片对10~100、2.5~10和0.2~2.5μm粒径的颗粒物吸附百分含量分别在75.4%、15.8%和8.9%左右,植物种类对叶片表面吸附不同颗粒物所占比例无影响;大叶黄杨在道路上吸附颗粒物总量最大,为139.86μg·cm~(-2),它的蜡质层和叶表面对不同粒径颗粒物吸附量均最高,能够有效降低城市中的大气颗粒物,是优良的城市绿化树种。  相似文献   

15.
天津市大气颗粒物铅的同位素丰度比测定   总被引:4,自引:0,他引:4  
对天津市 2 1个玻璃纤维滤膜大气颗粒物样品采用稀酸浸出法溶解后 ,测量了铅浓度、铅含量和同位素丰度比 (2 0 6Pb/2 0 7Pb) .并采用聚类分析方法对样品进行分组讨论 .1 样品的采集和测定本文旨在观察汽油无铅化进程中 ,大气颗粒物中铅来源的变化情况 .1 998年和 1 999年是汽油无铅化的关键时期 .大气颗粒物样品由天津市环境保护监测中心提供 ,采集于玻璃纤维滤膜上 .采样地点是天津市侯台站和天津市站两个国控站点 .采用KB 2 0型中流量采样器采集 2 4h的TSP样品 .从1 998年 1 1月到 1 999年 2月期间共采集样品 2 1个 .消解大气…  相似文献   

16.
大气颗粒物水溶性重金属元素研究进展   总被引:2,自引:0,他引:2  
以As、Cd、Cr、Cu、Ni、Mn、V、Pb和Zn为研究对象,总结历史及自身研究结果,从大气颗粒物水溶性重金属的分析方法、浓度水平、化合物形态、水溶性及其影响因素等方面进行分析.结果表明,发展中国家大气颗粒物水溶性重金属浓度较高,国内水溶性Zn和As污染严重,特别是As已超过国家空气质量标准中的浓度限值;大气中Zn、Pb、Cd、As和V的浓度和水溶性都较高(37.69%—58.65%),应受到广泛关注;大气颗粒物中重金属的水溶性主要受颗粒物粒径大小、酸碱性、重金属与颗粒物结合方式、金属化合物形态和来源的影响.研究结果可以为大气重金属污染控制和人体健康影响评估的开展提供理论基础.  相似文献   

17.
石家庄大叶黄杨叶片滞尘量及滞尘颗粒物的粒度   总被引:5,自引:0,他引:5  
大叶黄杨强滞尘能力是城市近地面层环境中清除颗粒物污染的重要机制。以大气颗粒物污染严重的石家庄市为代表,选取石家庄裕华路北部市区为研究范围,对大叶黄杨叶片的滞尘效应及滞尘颗粒物粒度特征进行了研究。结果表明,在晴朗或多云微风天气条件下,30个取样点的大叶黄杨叶片平均滞尘量为0.356g/(m2.d),颗粒物的平均粒度值为1.91μm。大叶黄杨叶片滞尘量在石家庄市不同地区的差异排序为:北二环地区>体育大街与东二环地区>中华大街与西二环地区>西郊>东郊>火车站附近地区>博物馆周边地区。因此,石家庄市大气环境治理应针对不同地段的污染情况采取不同的治理方法。  相似文献   

18.
本文采用安德森大气颗粒物分级采样器分别采集了宝鸡城郊灰霾天和非灰霾天的大气颗粒物,利用离子色谱仪进行水溶性无机离子组分的分析,探讨了宝鸡城郊大气颗粒物中离子组分的粒径分布特征;结合风向及气团后向轨迹,分析了大气污染物的区域传输对宝鸡大气颗粒物的影响.结果显示,灰霾天城区昼夜的颗粒物污染程度重于郊区,非灰霾天相反.宝鸡城郊灰霾天细粒子(PM_(2.1))污染严重,城区高于郊区;总水溶性离子(TWSIs)对灰霾天颗粒物质量浓度的贡献率高于非灰霾天;城郊灰霾天昼夜二次离子(SNA)浓度均高于非灰霾天;灰霾天城区夜间是二次离子的重污染时段,二次离子中NO~-_3的浓度最高.城郊灰霾天昼夜Ca~(2+)的浓度均低于非灰霾天.二次离子均呈双峰分布,主峰值均在细粒子中(0.43—1.1μm粒径段),属于液滴模态.K~+呈双峰分布,峰值分别在0.65—1.1μm和2.1—10.0μm粒径段,K~+的粗细粒径分布在城郊昼夜存在着一定关联的转化.灰霾天和非灰霾天Ca~(2+)的粒径分布均呈单峰分布,峰值在4.7—5.8μm粒径段.灰霾天宝鸡东部地区污染物自东向西的区域传输是宝鸡重污染发生的重要条件.  相似文献   

19.
不同绿地结构消减大气颗粒物的能力   总被引:1,自引:0,他引:1  
随着城市化和工业化的发展,空气环境问题日益突出,大气颗粒物污染受到人们越来越多的关注.为了研究城市道路中不同绿地结构对大气不同粒径颗粒物的消减作用,本文选择青岛市城阳区主干道——长城路的4种不同绿地结构("乔-灌-草"、"乔-草"、"乔-灌"、"灌-草"),测定其对不同粒径颗粒物(PM_(10)、PM_(2.5)、PM1)的消减率.结果表明:(1)不同粒径颗粒物的浓度日变化曲线呈现出"早晚高,中午低"的变化趋势,其中8:00—10:00的颗粒物浓度最高;颗粒物浓度日变化与空气湿度变化相一致,与温度变化相反;(2)4种绿地结构对PM_(10)的消减率表现为"乔-灌-草""乔-灌""灌-草""乔-草",对PM_(2.5)和PM1的消减率表现为"乔-灌-草""乔-灌""乔-草""灌-草";且各绿地结构对PM_(2.5)的消减能力最强,其次为PM1和PM_(10);(3)同一种绿地结构,植物种类越丰富,其消减大气颗粒物的能力越强.  相似文献   

20.
汞在不同粒径大气颗粒物中的分布   总被引:7,自引:0,他引:7  
采用DFG 1型五段分级采样装置及冷蒸汽原子荧光法 ,对北京市冬、春、夏和秋季不同粒径大气颗粒物 (分别为≤ 1 1μm ,1 1— 2 0 μm ,2 0— 3 3μm ,3 3— 7 0 μm和≥ 7 0 μm )中的汞进行分析 .结果表明 :北京大气颗粒物中汞的浓度在 0 6 0— 3 95ng·m-3 之间 ,冬季平均浓度为 2 85ng·m-3 ,远大于其它季节 ;大气颗粒物中的汞呈双峰分布 ,在≤ 1 1μm的细颗粒和粗粒径处各有一峰值 ;北京大气颗粒物中的汞主要分布在≤ 1 1μm的细颗粒中 ,不同粒径颗粒物中汞的分布随季节变化而变化 ,冬季各粒径颗粒物中汞的浓度比其它季节高 ;大气颗粒物中汞的质量中值粒径 (MMD )冬季为 0 71μm ,其它季节均大于1 0 μm ;北京大气颗粒物中的汞至少有 5 0 %可进入人体呼吸系统 ,且冬季最为严重  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号