首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
M. Thiel 《Marine Biology》2000,137(4):661-674
 The population dynamics and reproductive biology of an ascidian- and a sponge-dwelling amphipod were examined. The two undescribed amphipod species, Leucothoeascidicola” and L.spongicola”, are closely related to each other, and occur in ascidians and sponges, respectively, along the Florida Atlantic coast. L. “ascidicola” was abundant in solitary ascidians during fall 1997, disappeared during spring/early summer, and became abundant again in September 1998. During the time when L. “ascidicola” were absent from their hosts, a copepod became a frequent inhabitant of the ascidians but disappeared again when L.ascidicola” returned to the ascidians in September 1998. The numbers of L.spongicola” in sponges increased substantially during spring, when high reproductive activity was observed. Following this reproductive peak, both adult and juvenile amphipods apparently left the sponges, and during the summer amphipod numbers in the sponges were very low. Another small amphipod species, which often co-occurred with L.spongicola”, showed less seasonal variation and was found in sponges throughout the whole study period. The percentage of ovigerous females per host unit was usually lower in the ascidian-dwelling than in the sponge-dwelling amphipods. In solitary ascidians, L.ascidicola” amphipods usually occurred in groups of several adults, yet there never was more than one ovigerous female per ascidian. In contrast, several ovigerous L.spongicola” females were found to cohabit in the same spongocoel. This suggests that intrasexual aggression may be stronger among reproductive amphipod females in the ascidians than in sponges. The size distributions of juvenile cohorts indicate that juvenile L.ascidicola” remain for relatively long time periods in the parental ascidian, where they may reach sexual maturity. In contrast, in L.spongicola”, only cohorts of very small juveniles could be identified, indicating that juveniles disperse shortly after emerging from the female's brood pouch. It is concluded that extended parental care is of very short duration or does not occur in the sponge-dwelling amphipod L. “spongicola”, possibly because fast-growing sponges with a highly branched spongocoel system do not allow long-lasting coexistence of parent-offspring groups. In contrast, the discrete character of the solitary ascidians may enhance the potential for exclusion of other species, resource monopolization by reproductive females, and furthermore for long-lasting extended parental care in the ascidian-dwelling amphipod. Groups of single parents together with cohorts of large juveniles are reported in the literature for amphipods and isopods from brachiopods, bivalves and ascidians, suggesting that these discrete biotic microhabitats may favor the evolution of extended parental care in peracarid crustaceans. Received: 30 July 1999 / Accepted: 8 May 2000  相似文献   

2.
Marine sponges harbor dense and highly diverse bacterial communities, and some percentage of the microflora appears to be specialized for the sponge habitat. Bacterial diversity was examined in Chondrilla nucula Schmidt to test the hypothesis that some subset of sponge symbiont communities is highly similar regardless of the species of host or habitat requirements of the host. C. nucula was collected from a mangrove channel on Lower Matcumbe Key in the Florida Keys (25°53′N; 80°42′W) in August 1999. Domain-specific universal bacterial primers were used to amplify the 16S rDNA gene from genomic DNA that had been extracted from sponges and the surrounding water. An RFLP technique was used to assess diversity of sponge-associated and environmental bacterial communities. The clone library from C. nucula contained 21 operational taxonomic units (OTUs). None of the 53 OTUs from adjacent water samples were found in the C. nucula library indicating that a distinct community was present in the sponge. Sequence analysis indicated that C. nucula harbors a microbial community as diverse as the microbes from other sponges in different habitats around the world. Phylogenetic analysis placed several C. nucula clones in clades dominated by bacteria that appear to be sponge specialists (e.g., Acidobacteria, Bacteroidetes, and Cyanobacteria). Proportional representation of major bacterial taxonomic groups represented in symbiont communities was compared as a function of geographic location of sponge hosts. This study supports the hypothesis that sponges from different oceans existing in dissimilar habitats harbor closely related bacteria that are distinct from other bacterial lineages and appear specialized for residing within sponges.  相似文献   

3.
 The Palauan sponge Theonella swinhoei (class Demospongiae, order Lithistida, family Theonellidae) harbors filamentous bacterial symbionts that contain theopalauamide, an antifungal, bicyclic glycopeptide. In this study, the filamentous symbionts were shown to be novel bacteria belonging to the δ-subdivision of proteobacteria. The 16S rRNA gene sequence was determined using a combination of denaturing gradient-gel electrophoresis (DGGE) and specific polymerase chain-reaction (PCR) primers, and its source was confirmed by in situ hybridization. In a series of culture experiments, the filamentous bacteria were propagated in a mixed culture on agar plates. Related 16S rRNA gene sequences were isolated from related sponges with slightly different chemistry. The taxonomic status “Candidatus Entotheonella palauensis” is proposed for the theopalauamide-containing filamentous bacteria from T. swinhoei. Received: 12 June 1999 / Accepted: 22 January 2000  相似文献   

4.
S. Mariani  M.-J. Uriz  X. Turon 《Marine Biology》2000,137(5-6):783-790
 We performed an intensive year-round sampling with the aim of studying the abundance of sponge larvae in four Mediterranean benthic communities: photophilic algae, sciaphilous algae, semi-obscure (i.e. low light-intensity) caves and sandy bottoms. We record here for the first time, a larval bloom of Cliona viridis (Schmidt 1862), the most common excavating sponge in the Mediterranean, which took place simultaneously in several rocky communities of the Blanes sub-littoral (NE Spain), and discuss the role of restricted larval dispersal in the distribution of adult sponges. In the communities studied, C. viridis larvae bloomed synchronously once, in June. Spawning and consequent embryo development presumably occurred in May, when water temperature was 16 °C. The free larva is a small, evenly ciliated, weakly swimming parenchymella with low dispersal capabilities. The number of larvae m−3 and sponge abundance (as percent cover and biomass) were significantly higher in the community of sciaphilous algae than in the other communities studied. Because of limited larval dispersal, larval and adult abundance in the communities were positively correlated. Larvae developed into juvenile sponges 10 to 15 d after settlement. Settlers displayed distinctive features: a peripheral cuticle, vacuolar etching-like cells at the sponge base, absence of oscular chimneys, and the presence of zooxanthellae, which were presumably transmitted during oocyte maturation. Received: 24 January 2000 / Accepted: 4 July 2000  相似文献   

5.
Sessile marine invertebrate larvae can recognize suitable settlement substrata by using various environmental cues, including organic/microbial biofilms. In laboratory choice assays, the effect of biofilms of varying ages on the settlement behaviour of two fouling organisms was assessed. The species included the arborescent cheilostome bryozoan Bugula flabellata (Thompson) and the solitary ascidian Ciona intestinalis (L.), both of which are characteristic of temperate sublittoral hard substratum assemblages in northwest Europe. Experiments were carried out using polystyrene petri dish substrata preconditioned with multispecies biofilms from natural laboratory-aquarium seawater for 1, 3, 6 or 12 d. Unfilmed (new, initially sterile) dishes were used as control substrata. Whereas the coronate larvae of B. flabellata generally were inhibited by biofilming, irrespective of film age, the settlement of tadpole larvae of C. intestinalis was facilitated on biofilmed substrata, and numbers of settled larvae generally increased with biofilm age: the highest mean numbers were counted on 12 d-old biofilms. In C. intestinalis, settlement and metamorphosis are processes which can be temporally separate and are possibly induced by different environmental cues. This study therefore distinguished between C. intestinalis larvae which were attached to the biofilm surface by the anterior, and those larvae entrapped by the biofilm but not settled in the conventional meaning of the term. As reported in previous studies, we did observe that such entrapped larvae could subsequently attach and develop successfully into sessile juveniles. Both the numbers of “attached” and “trapped” tadpoles increased with biofilm age. Assuming that “settlement” is essentially a process involving the active behavioural response of larvae to environmental cues, it seems that the facilitated attachment of C. intestinalis onto biofilmed substrata is due to the combined effect of active habitat selection and passive deposition/“entrapment” of larvae onto the “sticky” substratum. Received: 21 August 1996 / Accepted: 21 November 1996  相似文献   

6.
In this study we performed a survey of the bacterial communities associated with the Western Atlantic demosponges Hymeniacidon heliophila and Polymastia janeirensis, based on 16S rRNA sequencing and transmission electron microscopy (TEM). We compared diversity and composition of the sponge-associated bacteria to those of environmental bacteria, represented by free-living bacterioplankton and by bacteria attached to organic particulate matter in superficial sediments. Partial bacterial 16S rRNA sequences from seawater, sediment, and sponges were retrieved by PCR, cloning, and sequencing. Sequences were subjected to rarefaction analyses, phylogenetic tree construction, and LIBSHUFF quantitative statistics to verify coverage and similarity between libraries. Community structure of the free-living bacterioplankton was phylogenetically different from that of the sponge-associated bacterial assemblages. On the other hand, some sediment-attached bacteria were also found in the sponge bacterial community, indicating that sponges may incorporate bacteria together with sediment particles. Rare and few prokaryotic morphotypes were found in TEM analyses of sponge mesohyl matrix of both species. Molecular data indicate that bacterial richness and diversity decreases from bacterioplankton, to particulate organic sediment, and to H. heliophila and P. janeirensis. Sponges from Rio de Janeiro harbor a pool of novel and exclusive sponge-associated bacterial taxa. Sponge-associated bacterial communities are composed of both taxons shared by many sponge groups and by species-specific bacteria.  相似文献   

7.
Several mechanisms are known to assist the survival of sponges in highly sedimented environments. This study considers the potential of sponge morphology and the positioning of exhalant water jets (through the osculum) in the adaptation of Haliclona urceolus to highly sedimented habitats. This sponge is cylindrical with an apical osculum, which is common in sedimented subtidal habitats at Lough Hyne Marine Nature Reserve, Cork, Ireland. Fifteen sponges were collected, preserved (killed with the structure and morphology maintained) and then replaced in a high sediment environment next to a living specimen (at 24 m). After 5 days, the sediment settled on both living and preserved sponges was collected and dried. No sediment was collected from living sponges, while preserved specimens had considerable amounts of settled sediment on their surfaces. The amount of sediment collected on these preserved specimens was significantly linearly correlated with sponge dry weight, maximum diameter and oscula width (R2>0.70, P<0.001, df=14). Observations of flow direction (using coloured dye) through H. urceolus showed that water is drawn into the sponge on its underside and exits via a large vertically pointing osculum. Sponge morphologies (shape) have often been considered as a means of passive adaptation to a number of different environmental parameters with oscula position enabling entrained flow through the sponge in high flow conditions. However, this study shows how the combination of sponge morphology (tubular shape) and positioning of the osculum may enable H. urceolus to survive in highly sedimented environments. Similar mechanisms may also aid the survival of some deep-water sponge species with similar morphologies.Communicated by J.P. Thorpe, Port Erin  相似文献   

8.
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18–30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6–12 μmol cm−3 sponge day−1. Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm−3 sponge day−1, and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.  相似文献   

9.
Morphological plasticity and ecological aspects of the demosponge Geodia cydonium (Jameson) were studied from seasonal samples collected over 1 year in two semi-enclosed Mediterranean bays of the Southern Italian coast (Marsala lagoon and Porto Cesareo basin). Sponge specimens present two morphs: sessile and non-sessile, both of which showed constant size distribution and density over the studied year. Sessile specimens were larger in size than non-sessile ones. This feature is particularly evident at Porto Cesareo, where these sponges have a more compact skeletal network than at Marsala (evident both in the cortical spicule size and sponge silica content). Sessile specimens adhere to hard rocky substrates (Porto Cesareo) or phanerogam rhizomes (Marsala); non-sessile ones occur on soft bottom areas. Several morphological and structural features of the non-sessile forms differ in the two environments, but the difference in body shape seems to play the most relevant role in enhancing the colonization of incoherent substrates. Indeed, at Marsala, where the large amount of silt and clay determines the occurrence of a markedly reduced anoxic layer just below the surface of the sediment, non-sessile specimens of G. cydonium are fairly spherical and thus able to roll, dragged by slow circular currents. In addition, the usual association with the red alga Rytyphlöea tinctoria, which almost constantly forms a thick and continuous layer around the sponge, allows them to avoid contact with the substrate. The non-sessile specimens from Porto Cesareo inhabit sandy soft bottoms and are flattened. In such an environment, affected by moderate wave turbulence, the flattened shape widens the contact surface between the body and the substrate, thereby reducing the risk of stranding. The evident signs of abrasion, provided by scanning electron microscopy investigations, on both cortical spicules and outermost sponge surface suggest that sponges rub on the bottom. Sediment, epibiontic organisms, and the phanerogam leaves protect this sciaphilous sponge from high solar radiation, allowing the specimens to live in these shallow environments.  相似文献   

10.
We observed a pronounced, yet reversible tissue reduction in the tropical sponge Aplysinella sp. under non-experimental conditions in its natural habitat, after transfer into seawater tanks, as well as after transplantation from deep to shallow water in the field. Tissue reduction resulted in the formation of small “reduction bodies” tightly attached to the sponge skeleton. Although volume loss and gain were substantial, both tissue reduction and regeneration were often remarkably rapid, occurring within few hours. Microscopic analysis of the reduction bodies revealed morphological similarities to previously described sponge primmorphs, with densely packed archaeocytes and spherulous cells enclosed by a thin layer of epithelial-like cells. Denaturing gradient gel electrophoresis (DGGE) revealed pronounced changes in the sponge-associated microbial community upon tissue reduction during laboratory and field experiments and following changes in ambient conditions after transplantation in the field. Generally, the microbial community associated with this sponge proved less stable, less abundant, and less diverse than those of other, previously investigated Verongid sponges. However, one single phylotype was consistently present in DGGE profiles of Aplysinella sp. This phylotype clustered with γ-proteobacterial sequences found previously in other sponge species of different taxonomic affiliations and geographic provenances, as well as in sponge larvae. No apparent changes in the total secondary metabolite content (per dry weight) occurred in Aplysinella sp. upon tissue reduction; however, comparative analysis of intact and reduced tissue suggested changes in the concentrations of two minor compounds. Besides being ecologically interesting, the tissue reduction phenomenon in Aplysinella sp. provides an experimentally manipulable system for studies on sponge/microbe symbioses. Moreover, it may prove useful as a model system to investigate molecular mechanisms of basic Metazoan traits in vivo, complementing the in vitro sponge primmorph system currently used in this context.  相似文献   

11.
We observed a pronounced, yet reversible tissue reduction in the tropical sponge Aplysinella sp. under non-experimental conditions in its natural habitat, after transfer into seawater tanks, as well as after transplantation from deep to shallow water in the field. Tissue reduction resulted in the formation of small “reduction bodies” tightly attached to the sponge skeleton. Although volume loss and gain were substantial, both tissue reduction and regeneration were often remarkably rapid, occurring within few hours. Microscopic analysis of the reduction bodies revealed morphological similarities to previously described sponge primmorphs, with densely packed archaeocytes and spherulous cells enclosed by a thin layer of epithelial-like cells. Denaturing gradient gel electrophoresis (DGGE) revealed pronounced changes in the sponge-associated microbial community upon tissue reduction during laboratory and field experiments and following changes in ambient conditions after transplantation in the field. Generally, the microbial community associated with this sponge proved less stable, less abundant, and less diverse than those of other, previously investigated Verongid sponges. However, one single phylotype was consistently present in DGGE profiles of Aplysinella sp. This phylotype clustered with γ-proteobacterial sequences found previously in other sponge species of different taxonomic affiliations and geographic provenances, as well as in sponge larvae. No apparent changes in the total secondary metabolite content (per dry weight) occurred in Aplysinella sp. upon tissue reduction; however, comparative analysis of intact and reduced tissue suggested changes in the concentrations of two minor compounds. Besides being ecologically interesting, the tissue reduction phenomenon in Aplysinella sp. provides an experimentally manipulable system for studies on sponge/microbe symbioses. Moreover, it may prove useful as a model system to investigate molecular mechanisms of basic Metazoan traits in vivo, complementing the in vitro sponge primmorph system currently used in this context.  相似文献   

12.
During 2008 and 2009, an epidemic affected sponges of the genus Ircinia in the Western Mediterranean. Investigations at a site on the European coast (6o43′08.80′′N; 3o43′52.20′′W) and another on the African coast (35o10′51.00′′N; 2o25′33.00′′W) revealed healthier African populations. The disease started with small pustules on the sponge surface, which subsequently coalesced forming larger, extensive lesions. An ultrastructural study suggested that a twisted rod is the etiological agent. It infected the sponges from the outside, initially killing the cells below the ectosome and then penetrating deeper into the body. The sponges responded to the bacterial progression by secreting concentric barriers of collagen and concentrating phagocytic cells at the diseased zones. This primitive immune system successfully resisted the disease in many instances, although mortality reached 27% in the studied populations. Epidemic outbreaks recur each year in September through November, arguably favored by abnormally high seawater temperatures in August.  相似文献   

13.
In this study eight different species of barnacles were found within nine species of sponges from the Red Sea. This brings to 11 the number of sponge-symbiotic barnacles reported from the Red Sea, two of these are new Acasta species (not described herein) and one (A. tzetlini Kolbasov) is a new record for this sea. This number is much higher than that of symbiotic barnacles found within sponges from either the N. Atlantic (2) or the Mediterranean (4). Two possible explanations for this are the presence of numerous predators in coral reefs and scarcity of available substrate for settlement. These factors can lead to high incidence of symbiotic relationships. Of the nine sponge species, only one (Suberites cf. clavatus) had previously been known to contain barnacles. Even at the family level, this is the first record of symbiotic barnacles in two out of the seven sponge families (Latrunculiidae, Theonellidae). Our present findings strengthen the apparent rule that the wider the openings in a barnacle shell, the fewer the host taxa with which it will associate, usually from one or two closely related families, and the more frequent it will associate with elastic sponges. Most Neoacasta laevigata found on Carteriospongia foliascens were located on the same side as the sponge's ostia, i.e. facing the incoming water. This adaptation allows the barnacles to catch more suspended particles from the water, provides them with more oxygen and prevents their exposure to discharged sponge waste. The highest density of barnacles observed on one face of a “leaf ” (with ostia) was 0.389 barnacles cm−2 (one barnacle per 2.57 cm2) and on average 0.181 ± 0.68, while the average on the other side was only 0.068 ± 0.52 barnacles cm−2. As indicated by the Morisita index, these barnacles most frequently (58%, n = 12) had a clumped spatial distribution (while the rest were randomly distributed), as is to be expected from such sessile organisms with internal fertilization via copulation. The presence of N. laevigata induced the growth of secondary perpendicular projections of its host C. foliascens. Of the N. laevigata examined, 17% brooded 324 ± 41 embryos each, of 286 ± 17 μm total length; only 5.7% (n = 123) were found to be dead. Size distribution analysis of skeletal elements from dead barnacles showed them to be significantly larger than the skeletal elements of the population of live barnacles ( p < 0.05). Received: 26 June 1998 / Accepted: 1 December 1998  相似文献   

14.
Although sediment deposition has detrimental effects on macroalgal settlement and recruitment, fucoid algae (mainly Sargassum duplicatum) thrive on rocky reefs always overlaid with fine sediments in sheltered sites of Kagoshima, Japan. The aim of the present study was to assess their ability to settle and recruit onto sediment-covered substrata. A transplant experiment using boulders with Sargassum juveniles attached showed that the 30-day survival rate was as high as 50% even for the juvenile stage (<10 mm) on boulders completely buried with sediment. In addition, an outdoor tank experiment testing the effects of different sediment thicknesses (0–4 mm) on already settled 4-day old S. duplicatum germlings indicated significant reductions in growth by the presence of sediment cover even at 0.5 mm but no significant increase in mortality up to 2 mm. Furthermore, an in situ experiment in which sterilized cobbles were placed at a sediment-covered site to allow sediment to settle over them before the embryo release showed a uniformly high recruitment of Sargassum over the cobbles. This suggests the presence of unknown mechanisms to allow the settlement of propagules on substrata thinly but completely covered by fine sediments.  相似文献   

15.
We have developed a numerical method to simulate the transport of non-sorbing contaminants within the sediment layer of a stream and the leaching of these contaminants in the steam. Typical stream bottom surfaces are uneven with triangularly shaped undulation forms. The flow of the water above such triangular surfaces causes external pressure changes that result in a “pumping effect” and a secondary flow within the sediment. The latter causes a significant contaminant advection within the sediment layer. The flow field in the porous sediment layer is obtained by solving numerically Darcy’s equations. The unsteady mass transfer equation is solved by using a finite-difference method with an up-wind scheme. The effects of parameters, such as channel slope, hydraulic head and dispersion, are studied by quantitatively comparing the numerical results of the total mass flow rate from the contaminant source, the concentration front propagation, and the contaminant mass flow rate into the water column. The “pumping effect,” increases the flow in the vertical direction and, thus, enhances the vertical advective mass transport of the contaminant. This bedform-shape induced flow is largely responsible for the mass transfer of contaminants into the water column. The numerical results also show that the mechanical dispersion inside the sediment bed will significantly increase the contaminant mass flow rate from the source.  相似文献   

16.
The growth of animals in most taxa has long been well described, but the phylum Porifera has remained a notable exception. The giant barrel sponge Xestospongia muta dominates Caribbean coral reef communities, where it is an important spatial competitor, increases habitat complexity, and filters seawater. It has been called the ‘redwood of the reef’ because of its size (often >1 m height and diameter) and presumed long life, but very little is known about its demography. Since 1997, we have established and monitored 12 permanent 16 m diameter circular transects on the reef slope off Key Largo, Florida, to study this important species. Over a 4.5-year interval, we measured the volume of 104 tagged sponges using digital images to determine growth rates of X. muta. Five models were fit to the cubed root of initial and final volume estimates to determine which best described growth. Additional measurements of 33 sponges were taken over 6-month intervals to examine the relationship between the spongocoel, or inner-osculum space, and sponge size, and to examine short-term growth dynamics. Sponge volumes ranged from 24.05 to 80,281.67 cm3. Growth was variable, and specific growth rates decreased with increasing sponge size. The mean specific growth rate was 0.52 ± 0.65 year−1, but sponges grew as fast or slow as 404 or 2% year−1. Negative growth rates occurred over short temporal scales and growth varied seasonally, significantly faster during the summer. No differences in specific growth rate were found between transects at three different depths (15, 20, 30 m) or at two different reef sites. Spongocoel volume was positively allometric with increasing sponge size and scaling between the vertical and horizontal dimensions of the sponge indicated that morphology changes from a frustum of a cone to cylindrical as volume increases. Growth of X. muta was best described by the general von Bertalanffy and Tanaka growth curves. The largest sponge within our transects (1.23 × 0.98 m height × diameter) was estimated to be 127 years old. Although age extrapolations for very large sponges are subject to more error, the largest sponges on Caribbean reefs may be in excess of 2,300 years, placing X. muta among the longest-lived animals on earth.  相似文献   

17.
Intertidal communities at Macquarie Island (sub-Antarctic) were re-evaluated seven years after a small oil spill resulting from the grounding of the “Nella Dan”, and six years after the first assessment of biological impact. Sampling was conducted to evaluate community structure in three zones of the exposed rocky shore (upper red, kelp, and lower red) and in samples of Durvillaea antarctica holdfasts. There were no significant differences between the community structure in oiled and control locations in any of the three shore zones, but holdfast macrofaunal communities at oiled sites still showed evidence of impact. Holdfast community-structure in samples from heavily oiled sites showed moderate levels of recovery, with increased abundances of species which were considered sensitive to the oiling in the first post-impact studies and decreased abundances of opportunistic polychaete and oligochaete worms. In contrast, samples collected from the moderately oiled location at Secluded Bay showed little evidence of recovery. Holdfasts at this site were filled with sediment containing traces of diesel oil, and the macrofaunal community was dominated by opportunistic worms. This study clearly indicates that even small incidents of anthropogenic perturbation can have long-lasting consequences for marine communities at Macquarie Island. Received: 23 July 1997 / Accepted: 5 February 1998  相似文献   

18.
Experimental etching with hydrofluoric acid indicated that silica deposition occurs in a recognizable pattern in common sponge microscleres. The postdepositional alteration of these spicules has previously been generally unrecognized or misinterpreted in the literature. Early stages of postdepositional etching of sponge spicules were observed in the acid insoluble fraction of sediments from the West Atlantic barrier reef near Carrie Bow Cay, Belize. Preliminary data on silica distribution in the Belize barrier reef show that concentrations in fine sediment (<0.25 mm) increase landward of the main reef tract. Sponge spicules are the main component of particulate silica in sediments of the reef and fore-reef where sponge populations abound, whereas grains prevail in the back-reef lagoon deposits. Recycling of locally dissolved silica appears to be important for the growth of many off-shore reef sponges.  相似文献   

19.
The reproductive cycle of Geodia cydonium in a semi-enclosed Mediterranean bay (Porto Cesareo, SW Apulia) was studied with monthly frequency over a 3-year period. The investigation was carried out by utilizing a technique consisting of tagging ten individuals with a PVC stick and cutting off, by means of a metal cork borer, small samples (cylinders about 5 cm3 in volume) from each of them for histological analysis. Sexual reproductive elements were detected in all individuals, but in the third year some specimens showed reduced reproductive activity or complete infertility. Spermatogenesis occurred in a short period (from June to August) whereas oogenesis lasted longer (from spring to late summer). Spermatic cysts occurred when the frequency of specimens with oocytes reached its maximum values. A relationship between water temperature and the onset of gamete differentiation was observed. G. cydonium is here confirmed oviparous and gonochoric with a sex ratio in favour of the females. However, in contrast with current literature on Porifera—which suggests that only a limited number of sponges, all belonging to the same species are sexually active—the sexual reproduction of this species involves all the examined individuals. This finding can be explained by the methodological approach used in this research, which differs from the traditional way of assessing the sponge reproductive cycle by analysing randomly collected specimens within a population. The study of a series of individuals over time represents a better “model technique” for investigating sponge sexual reproduction and the effect of environmental parameters on gamete differentiation.  相似文献   

20.
Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic‐related pressures. This is a critical information gap in understanding sponge conservation status. Estado Global de la Conservación de Esponjas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号