首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

2.
Canopy leaching of nutrients and metals in a mountain spruce forest   总被引:1,自引:0,他引:1  
Precipitation and throughfall fluxes of major ions, nutrients (C, N, P), and metals (Al, Fe, Mn), and the chemical composition of litter fall and living plant tissue in Norway spruce stands (the Bohemian Forest; Czech Republic), were used to evaluate how microbial processes and decay of plant tissue in canopies influence canopy leaching (CL) of elements. Proton exchange for Mg2+, Ca2+, and K+ in decaying biomass and co-transport of Ca2+ and K+ out of plant cells with organic acid anions were the most likely processes contributing to CL of base cations. The CL of total P and N (and also NO3?) was minor. Important proportions of the N and P mineral forms were transformed to organic forms by microbial processes (primary and bacterial production), with the respective CL of ?13.9 and 16.4 mmol m?2 yr?1 for NH4+ and organic N, and ?0.33 and 0.22 mmol m?2 yr?1 for dissolved reactive P (DRP) and organic P. Most of particulate P and N in throughfall (~90%) originated from microbial DRP and NH4+ transformations, but particulate C mostly came from the fragmentation of plant tissue (58%). Among metals, CL was not observed for Al, was small for Fe (0.3 mmol m?2 yr?1), and greatest for Mn (0.9 mmol m?2 yr?1) due to leaching from decaying tissue by acidic precipitation.  相似文献   

3.
We measured the soil and leaf CO2 exchange in Quercus ilex and Phillyrea latifolia seasonally throughout the year in a representative site of the Mediterranean region, a natural holm oak forest growing in the Prades Mountains in southeastern Catalonia. In the wet seasons (spring and autumn), we experimentally decreased soil moisture by 30%, by excluding rainfall and water runoff in 12 plots, 1×10 m, and left 12 further plots as controls. Our aim was to predict the response of these gas exchanges to the drought forecasted for the next decades for this region by GCM and ecophysiological models.Annual average soil CO2 exchange rate was 2.27±0.27 μmol CO2 m−2 s−1. Annual average leaf CO2 exchange rates were 8±1 and 5±1 μmol m−2 s−1 in Q. ilex and P. latifolia, respectively. Soil respiration rates in control treatments followed a seasonal pattern similar to photosynthetic activity. They reached maximum values in spring and autumn (2.5–3.8 μmol m−2 s−1 soil CO2 emission rates and 7–15 μmol m−2 s−1 net photosynthetic rates) and minimum values (almost 0 for both variables) in summer, showing that soil moisture was the most important factor driving the soil microbial activity and the photosynthetic activity of plants. In autumn, drought treatment strongly decreased net photosynthesis rates and stomatal conductance of Q. ilex by 44% and 53%, respectively. Soil respiration was also reduced by 43% under drought treatment in the wet seasons. In summer there were larger soil CO2 emissions in drought plots than in control plots, probably driven by autotrophic (roots) metabolism. The results indicate that leaf and soil CO2 exchange may be strongly reduced (by ca. 44%) by the predicted decreases of soil water availability in the next decades. Long-term studies are needed to confirm these predictions or to find out possible acclimation of those processes.  相似文献   

4.
Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 μg m−3 for HNO3, and 2.6-5.2 μg m−3 for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha−1 for maximum values, and 0.4-8 kg N ha−1 for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3.  相似文献   

5.

Radiation use efficiency (RUE) is considered critical for calculation of crop yield. The crop productivity can be improved by increasing the interception of solar radiation and maintaining higher RUE for plants. Irrigation water and nitrogen (N) supply are the main limiting factors for RUE in maize (Zea mays L.) across the semi-arid environments. Field experiments were conducted during two consecutive growing seasons (2009–2010) to optimize RUE in relation to N application timings and rates with varying irrigation water management practices. In experiment 1, three N application timings were made, while in experiment 2, three possible water management practices were used. In both experiments, five N rates (100, 150, 200, 250, and 300 kg N ha−1) were applied to evaluate the effects of irrigation water and N on cumulative photosynthetic active radiation (PARi), dry matter RUE (RUEDM), and grain yield RUE (RUEGY). The results demonstrated that cumulative PARi and RUEs were not constant during the plant growth under varying the nutrients. The water and N significantly influenced cumulative PARi and RUEs during the both growing seasons. In experiment 1, the maximum cumulative PARi was observed by application of 250 kg N ha−1 in three splits (1/3 N at V2, 1/3 N at V16, and 1/3 N at R1 stage), and the highest RUEDM was achieved by the application of 300 kg N ha−1. However, the highest RUEGY was observed by application of 250 kg N ha−1. In experiment 2, the maximum cumulative PARi was attained at normal irrigation regime with 250 kg N ha−1, while the highest RUEDM and RUEGY were recorded at normal irrigation regime with the application of 300 kg N ha−1. The regression analysis showed significant and positive correlation of RUEGY with grain yield. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance maize grain yield semi-arid environment; this may be considered in formulating good agricultural practices for the environmental conditions resembling to those of this study.

  相似文献   

6.
NOX fluxes from three kinds of vegetable lands and a rice field were measured during summer–autumn in the Yangtze Delta, China. The average NO fluxes from the rice fields (RF), celery field (CE), maize field (MA) and cowpea field (CP) were 4.1, 30.8, 54 and 32.2 ng N m?2 s?1, respectively; and the average NO2 fluxes were ?2.12, 0.68, 1.33 and 0.5 ng N m?2 s?1, respectively. The liquid N fertilizer (the mixture of swine excrement and urine) which is widely applied to vegetable lands by Chinese farmers was found to quickly stimulate NO emission, and have significant contribution to NO emission from the investigated vegetable lands. Apparent linearity correlations were found between NO2 fluxes and the ambient concentrations of the rice fields, with a compensation point of about 2.84 μg m?3. Total emissions of NO during summer–autumn time from this area were roughly estimated to be 4.1 and 8.4 Gg N for rice field and vegetable lands, respectively.  相似文献   

7.
Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m−2) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N2O, CH4 and CO2 fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N2O fluxes were from 26% to 79% lower than N2O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N2O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH4 fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.  相似文献   

8.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

9.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

10.
The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha−1 yr−1 as NH4NO3 to the ambient 9 kg N ha−1 yr−1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g−1.  相似文献   

11.
Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates were calculated using a dynamic flow-through chamber system coupled to a mobile laboratory for in-situ analysis. Average NO fluxes during late spring 1995 were: 50.9±47.7 ng N m−2 s−1 from soil planted with corn in the lower coastal plain. Average NO fluxes during summer 1995 were: 6.4±4.6 and 20.2±19.0 ng N m−2 s−1, respectively, from soils planted with corn and soybean in the coastal region; 4.2±1.7 ng N m−2 s−1 from soils planted with tobacco in the piedmont region; and 8.5±4.9 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. Average NO fluxes for spring 1996 were: 66.7±60.7 ng N m−2 s−1 from soils planted with wheat in the lower coastal plain; 9.5±2.9 ng N m−2 s−1 from soils planted with wheat in the coastal plain; 2.7±3.4 ng N m−2 s−1 from soils planted with wheat in the piedmont region; and 56.1±53.7 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. An apparent increase in NO flux with soil temperature was present at all of the locations. The composite data from all the research sites revealed a general positive trend of increasing NO flux with soil water content. In general, increases in total extractable nitrogen (TEN) appeared to be related to increased NO emissions within each site, however a consistent trend was not evident across all sites.  相似文献   

12.

In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L−1, Cr 4 μg L−1, Ni 25 μg L−1, and Zn 30 μg L−1; of treatment 2 (T2) were Pb 70 μg L−1, Cr 70 μg L−1, Ni 70 μg L−1, and Zn 70 μg L−1; and of treatment 3 (T3) were Pb 1000 μg L−1, Cr 1000 μg L−1, Ni 500 μg L−1, and Zn 100 μg L−1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  相似文献   

13.
The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m−3), aluminium (as Al2O3 from around 600 to 2200 ng m−3), titanium (from 200 to 700 ng m−3), magnesium (from 100 to 500 ng m−3), lead (from 17 to 379 ng m−3), barium (from 39 to 322 ng m−3), strontium (from 3 to 112 ng m−3), copper (from 12 to 71 ng m−3), and antimony (from 1 to 52 ng m−3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.  相似文献   

14.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

15.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

16.
Personal exposures, residential indoor, outdoor and workplace levels of nitrogen dioxide (NO2) were measured for 262 urban adult (25–55 years) participants in three EXPOLIS centres (Basel; Switzerland, Helsinki; Finland, and Prague; Czech Republic) using passive samplers for 48-h sampling periods during 1996–1997. The average residential outdoor and indoor NO2 levels were lowest in Helsinki (24±12 and 18±11 μg m−3, respectively), highest in Prague (61±20 and 43±23 μg m−3), with Basel in between (36±13 and 27±13 μg m−3). Average workplace NO2 levels, however, were highest in Basel (36±24 μg m−3), lowest in Helsinki (27±15 μg m−3), with Prague in between (30±18 μg m−3). A time-weighted microenvironmental exposure model explained 74% of the personal NO2 exposure variation in all centres and in average 88% of the exposures. Log-linear regression models, using residential outdoor measurements (fixed site monitoring) combined with residential and work characteristics (i.e. work location, using gas appliances and keeping windows open), explained 48% (37%) of the personal NO2 exposure variation. Regression models based on ambient fixed site concentrations alone explained only 11–19% of personal NO2 exposure variation. Thus, ambient fixed site monitoring alone was a poor predictor for personal NO2 exposure variation, but adding personal questionnaire information can significantly improve the predicting power.  相似文献   

17.

The water fluxes through the mountainous forest ecosystem ‘Mühleggerköpfl’ were simulated by means of the mechanistic soil physical model Hydrus ID. The objective was to set up a nitrogen budget in order to decide if the ecosystem accumulates nitrogen or if nitrogen leaks from the site. The simulated annual loss of N by percolation ranges between 0.4 and 1 g N m−2 yr and is smaller than the annual input by bulk and occult deposition, which combines to approx 1.2–1.5 g N m yr. Obviously the forest soil presently accumulates N. With an N input-rate exceeding the N output, the operationally defined status of N saturation is not yet reached. Comparing the magnitude of the N pool in the soil (several kg N m−2) with the rate of the annual increase (a few g N m−2yr−1), the process of N saturation is apparently slow.

  相似文献   

18.

To investigate the effects of moist olive husks (MOH-residues) on soil respiration, microbial biomass, and enzymatic (o-diphenoloxidase, β-glucosidase, dehydrogenase and alkaline phosphatase) activities, a silty clay soil was incubated with 0 (control), 8 × 103 (D), 16 × 103 (2D) and 80 × 103 (10D) kg ha?1 of MOH-residues on a dry weight basis. Soil respiration and microbial biomass data indicated that the addition of MOH-residues strongly increased microbial activity proportionally to the amounts added. Data of qCO2 suggested that the respiration to biomass ratio of the microbial population was strongly modified by MOH-residues additions during the first 90 days of incubation. The qCO2 data suggested a low efficiency in energy yields from C oxidation during the first 2 months of soil incubation. qFDA seemed to be relatively unaffected for treatments D and 2D as compared to the control, but was significantly lowered by the application of 10D, showing the lowest hydrolytic activity of microbial biomass in this treatment up to 360 days of incubation.

o-Diphenoloxidase activity was delayed, and this delay was extended with the addition of larger quantities of MOH-residues. Alkaline phosphatase, β-glucosidase and dehydrogenase activities were in line with the findings on microbial biomass changes and activities. The biological and biochemical data suggest that the addition of a large quantity of MOH-residues (80 × 103 kg ha?1) strongly modifies the soil characteristics affecting the r- and K-strategist populations, and that these changes last for at least the 360 days of incubation. The data also suggest that application rates exceeding 16 × 103 kg ha?1 are not recommended until the agro-chemical and -physical functions of the soil are further studied.  相似文献   

19.
The combined impacts of simulated increased nitrogen (N) deposition (75 kg N ha−1 yr−1) and increasing background ozone (O3) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O3 treatments ranging from 15.5 ppb to 92.7 ppb (24 h average mean). A-Ci curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O3 reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O3 and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species.  相似文献   

20.
An automated system for continuous measurement of N2O fluxes on an hourly basis was employed to study N2O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N2O emissions occurred mainly within two weeks of application of NH4+-based fertilizer and total N2O emissions in wheat (average 0.35 or 0.21 kg N ha−1 season−1) and maize (average 1.47 or 0.49 kg N ha−1 season−1) under conventional and optimum N fertilization (300 and 50-122 kg N ha−1, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N2O was produced mainly from nitrification of NH4+-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N2O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH4+- to NO3ˉ-based fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号