首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
废物处理   3篇
基础理论   2篇
污染及防治   16篇
评价与监测   5篇
社会与环境   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2004年   1篇
  1994年   1篇
排序方式: 共有27条查询结果,搜索用时 218 毫秒
1.
Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress.  相似文献   
2.
Environmental Science and Pollution Research - Chromium (Cr) is a biologically non-essential, carcinogenic and toxic heavy metal. The cultivation of Cr-tolerant genotypes seems the most favorable...  相似文献   
3.

Radiation use efficiency (RUE) is considered critical for calculation of crop yield. The crop productivity can be improved by increasing the interception of solar radiation and maintaining higher RUE for plants. Irrigation water and nitrogen (N) supply are the main limiting factors for RUE in maize (Zea mays L.) across the semi-arid environments. Field experiments were conducted during two consecutive growing seasons (2009–2010) to optimize RUE in relation to N application timings and rates with varying irrigation water management practices. In experiment 1, three N application timings were made, while in experiment 2, three possible water management practices were used. In both experiments, five N rates (100, 150, 200, 250, and 300 kg N ha−1) were applied to evaluate the effects of irrigation water and N on cumulative photosynthetic active radiation (PARi), dry matter RUE (RUEDM), and grain yield RUE (RUEGY). The results demonstrated that cumulative PARi and RUEs were not constant during the plant growth under varying the nutrients. The water and N significantly influenced cumulative PARi and RUEs during the both growing seasons. In experiment 1, the maximum cumulative PARi was observed by application of 250 kg N ha−1 in three splits (1/3 N at V2, 1/3 N at V16, and 1/3 N at R1 stage), and the highest RUEDM was achieved by the application of 300 kg N ha−1. However, the highest RUEGY was observed by application of 250 kg N ha−1. In experiment 2, the maximum cumulative PARi was attained at normal irrigation regime with 250 kg N ha−1, while the highest RUEDM and RUEGY were recorded at normal irrigation regime with the application of 300 kg N ha−1. The regression analysis showed significant and positive correlation of RUEGY with grain yield. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance maize grain yield semi-arid environment; this may be considered in formulating good agricultural practices for the environmental conditions resembling to those of this study.

  相似文献   
4.
This replicated 4×2 factorial study investigated the bioaccumulation of selected metals (Mn, Pb, Zn, Hg and Cr) in four tissues (gills, liver, muscle and skin) of common carp (Cyprinus carpio) domiciled in two sites (upstream and downstream) of Indus River in Mianwali district of Pakistan. The data were statistically compared for the main effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals in fish organs at P?P?相似文献   
5.
Environmental Science and Pollution Research - The unconventional energy sources like hydrogen energy have tremendous potential of filling the gap between economic growth and clean energy...  相似文献   
6.
The sources of toxic xenobiotics and different factors such as ecological diversity, differences in comparative anatomy, physiology and biochemistry, food chain variation, interrelationship within species and life span, etc., are considered during risk assessment of pollutants, and their impact on aquatic ecotoxicology is identified. A fugacity and multimedia compartment model is suggested, based on toxicodynamic (toxicity of the chemical) and toxicokinetic (metabolism of the chemical) considerations to predict and screen the behaviour of pollutants quantitatively in the aquatic environment. The significance of the risk analysis approach in anticipatory actions and regulation of pollution levels is discussed.  相似文献   
7.
Land application of biosolids from processed sewage sludge may deteriorate soil, water, and plants. We investigated the impact of the N-Viro biosolids land-application on the quality of the soil water that moved through Orthic Humo-Ferric Podzols soil of Nova Scotia (NS) at the Wild Blueberry Research Institute, Debert, NS Canada. In addition, the response of major soilproperties and crop yield was also studied. Wild blueberry (Vaccinium angustifolium. Ait) was grown under irrigated and rainfed conditions in 2008 and 2009. Four experimental treatments including (i) NI: N-Viro irrigated, (ii) NR: N-Viro rainfed, (iii) FI: inorganic fertilizer irrigated, and (iv) FR: inorganic fertilizer rainfed (control) were replicated 4 times under randomized complete block design. Soil samples were collected at the end of each year and analyzed for changes in cation exchange capacity (CEC), soil organic matter (SOM), and pH.Soil water samples were collected four times during the study period from the suction cup lysimeters installed within and below crop root zone at 20 and 40 cm depths, respectively. The samples were analyzed for a range of water quality parameters including conductance, hardness, pH, macro- and micronutrients, and the infectious pathogens Escherichia coli (E. coli) and salmonella. Berries were harvested for fruit yield estimates. Irrigation significantly increased CEC during 2008 and the soil pH decreased from 4.93 (2008) to 4.79 (2009). There were significant influences of irrigation, fertilizer, and their interaction, in some cases, on most of the soil water quality parameters except on the infectious bacteria. No presence of E. coli or salmonella were observed in soil and water samples, reflecting the absence of these bacteria in biosolids used in this experiment. Nutrient concentration in the soil water samples collected from the four treatments were higher in the sequence NI > NR > FI > FR. The irrigation treatment had significant effect on the unripe fruit yield. We conclude that the comparable performance of N-Viro biosolids and the increasing prices of inorganic fertilizers would compel farmers to use economically available N-Viro biosolids that, coupled with the supplemental irrigation, did not deteriorate the studied soil properties, soil water quality, and the wild blueberry yield during this experiment.  相似文献   
8.
An innovative but simple analytical modeling tool for reconstructing contaminant concentration versus time trends (i.e., “source history”) for a site using high‐resolution contaminant profiles from low permeability (low‐k) zones was developed and tested. Migration of contaminants into low‐k zones via diffusion (and possibly slow advection) produce concentration versus depth profiles that can be used to understand temporal concentration trends at the interface with overlying transmissive zones, including evidence of attenuation over time due to source decay. A simple transport‐based spreadsheet tool for generating source history estimates fit to the profiles was developed and applied to published soil concentration versus depth data from five distinct areas of four different sites contaminated with chlorinated ethenes. Using the root mean square error as an optimization metric, strong fits between measured and model‐predicted soil data were obtained in the majority of cases using site‐specific values for input parameters. In general, significant improvements could not be obtained by varying these parameters. As a result, the source history estimates generated by the tool were similar to those that had already been generated using more intensive analytical or numerical inverse modeling approaches. This included confirmation of constant source histories at locations where dense nonaqueous‐phase liquid was present (or suspected to be present), and declining source histories for locations where source isolation and/or attenuation had occurred. The advantage of the modeling tool described here is that it provides a simpler yet more dynamic method for understanding source behavior over time than existing approaches. ©2015 Wiley Periodicals, Inc.  相似文献   
9.
Environmental Science and Pollution Research - Chlorpyrifos (ChF) is an organophosphate pesticide that is widely used in agricultural fields and indoor for controlling pests. Aquatic ecosystems are...  相似文献   
10.
A combined approach utilizing GIS, Participatory Rural Appraisal (PRA) and Focus Group Discussion (FGD) has been developed for resource mapping in a rural poverty-prone area of Bangladesh. This model integrated GIS and participatory tools to include the voices of the stakeholders in assessing available resources and needs. The resource mapping framework, developed using PRA with local community people and community gatekeepers, was aimed at sustainable resource management, and ArcView GIS was used to digitize the resource maps as a Decision Support System (DSS). A detailed assessment and analysis of the quality, quantity and physical status of resources was first mapped in the field and then digitized using GIS. FGD-based interaction with community people at each union in a subdistrict of Bangladesh revealed stakeholders’ opinions on land and water body management. The present paper demonstrates the power of this model as a policy-making tool for sustainable development and poverty eradication. It also recognized the need for collaboration between interdisciplinary policy planners and researchers to develop and implement a policy on agricultural resource management for poverty-prone areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号