首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   

2.
House-Peters, Lily, Bethany Pratt, and Heejun Chang, 2010. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon. Journal of the American Water Resources Association (JAWRA) 46(3):461-472. DOI: 10.1111/j.1752-1688.2009.00415.x Abstract: In the Portland metropolitan area, suburban growth in cities such as Hillsboro is projected to increase as people seek affordable housing near a burgeoning metropolis. The most significant determinants for increases in water demand are population growth, climate change, and the type of urban development that occurs. This study analyzes the spatial patterns of single family residential (SFR) water consumption in Hillsboro, Oregon, at the census block scale. The following research questions are addressed: (1) What are the significant determinants of SFR water consumption in Hillsboro, Oregon? (2) Is SFR water demand sensitive to drought conditions and interannual climate variation? (3) To what magnitude do particular census blocks react to drought conditions and interannual climate variation? Using ordinary least squares multiple regression and spatial regression methods, we found that base use, representing indoor water use, is dependent on household size and that seasonal use, representing external water use is dependent on both education level and the size of the property’s outdoor space. Spatial analysis techniques determined that although the water demand of the study area as a whole is not sensitive to drought conditions, certain individual census blocks do respond with a higher magnitude of water use. The most climate-sensitive census blocks tend to contain newer and larger homes, and have higher property values and more affluent and well-educated residents.  相似文献   

3.
Over recent decades Auckland, New Zealand, metropolitan area has vastly expanded as a result of rapid population growth and low-density housing developments. In order to manage the uncontrolled low-density urban sprawl, Auckland Council proposed a compact city model through promoting higher density housing developments. In order to understand the implications of this transition on future residential water demand, this study first evaluated water consumption in three major housing types in Auckland including single houses, low-rise and high-rise apartments. Using the geographic information system, the water consumption information, estimated from a large sample of 60,000 dwellings across Auckland, was subsequently integrated with the Proposed Auckland Unitary Plan outlining the future housing composition over different areas in Auckland. Through developing different growth scenarios, the study showed that the housing transition from single houses to more intensified multi-unit houses cannot considerably affect the average per capita water consumption in Auckland.  相似文献   

4.
Water availability risk is a local issue best understood with watershed‐scale quantification of both withdrawal and consumptive demands in the context of available supply. Collectively, all water use sectors must identify, understand, and respond to this risk. A highly visual and computationally robust decision support tool, Water Prism, quantitatively explores mitigation responses to water risk on both a facility‐level and basin‐aggregated basis. Water Prism examines a basin water balance for a 40‐ to 60‐year planning horizon, distinguishes among water use sectors, and accounts for ecosystem water needs. The 2012 Texas State Water Plan was used to apply Water Prism to the Big Cypress‐Sulphur Basin (Texas). The case study showed Water Prism to be an accurate and convenient tool to provide fine‐scale understanding of water use in the context of available supply, evaluate multi‐sector combinations of conservation strategies, and quantify the effects of future demands and water availability. Analyses demonstrated water availability risks for rivers and reservoirs can vary within a basin and must be calculated independently, simulation of water balance conditions can help illuminate potential impacts of increasing demands, and scenario simulations can be used to evaluate relative conservation efficacy of different water resource management strategies for each sector. Based on case study findings, Water Prism can serve as a useful assessment tool for regional water planners.  相似文献   

5.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   

6.
Weather variability has the potential to influence municipal water use, particularly in dry regions such as the western United States (U.S.). Outdoor water use can account for more than half of annual household water use and may be particularly responsive to weather, but little is known about how the expected magnitude of these responses varies across the U.S. This nationwide study identified the response of municipal water use to monthly weather (i.e., temperature, precipitation, evapotranspiration [ET]) using monthly water deliveries for 229 cities in the contiguous U.S. Using city‐specific multiple regression and region‐specific models with city fixed effects, we investigated what portion of the variability in municipal water use was explained by weather across cities, and also estimated responses to weather across seasons and climate regions. Our findings indicated municipal water use was generally well‐explained by weather, with median adjusted R2 ranging from 63% to 95% across climate regions. Weather was more predictive of water use in dry climates compared to wet, and temperature had more explanatory power than precipitation or ET. In response to a 1°C increase in monthly maximum temperature, municipal water use was shown to increase by 3.2% and 3.9% in dry cities in winter and summer, respectively, with smaller changes in wet cities. Quantifying these responses allows urban water managers to plan for weather‐driven variability in water use.  相似文献   

7.
Conventional indicators of water use for urban areas account primarily for direct water use. In contrast, our objective here is to employ the water footprint (WF) concept and methodology to include the virtual or indirect water use to assess the production‐side and consumption‐side WF of 65 United States (U.S.) cities. The 65 cities include the largest metropolitan areas and some of the major mid‐sized cities in the U.S. We use metropolitan areas to define our city boundaries as this is the native spatial resolution of the main datasets used. To estimate the urban WFs, we integrated large and disparate datasets, including commodity flow (agricultural, livestock, and industrial commodities), water use, and socioeconomic data. By analyzing the estimated WF values, we found indirect water use accounts on average for 66% of the WF of consumption. We found some cities are net virtual water exporters (11 of 65) because they rely heavily on direct water uses or are heavy producers of industrial commodities. Also, WF patterns vary widely across the U.S. but regional patterns seem to emerge. For example, the dense cities of the U.S. northeast megaregion have a significantly low per capita WF relative to the other cities, while cities in the Gulf Coast megaregion have a significantly higher industrial WF of production and consumption. Furthermore, there is inequality in the WF of consumption where a few cities account for a disproportionate share of the total U.S. urban water uses.  相似文献   

8.
With increasing water scarcity and competing uses and users, water use efficiency is becoming increasingly important in many parts of developing countries. The lake Naivasha basin has an array of different water users and uses ranging from large scale export market agriculture, urban domestic water users to small holder farmers. The small scale farmers are located in the upper catchment areas and form the bulk of the users in terms of area and population. This study used farm household data to explore the overall technical efficiency, irrigation water use efficiency and establish the factors influencing water use efficiency among small scale farmers in the Lake Naivasha basin in Kenya. Data envelopment analysis, general algebraic and modeling system, and Tobit regression methods were used in analyzing cross sectional data from a sample of 201 small scale irrigation farmers in the lake Naivasha basin. The results showed that on average, the farmers achieved only 63 % technical efficiency and 31 % water use efficiency. This revealed that substantial inefficiencies occurred in farming operations among the sampled farmers. To improve water use efficiency, the study recommends that more emphasis be put on orienting farmers toward appropriate choice of irrigation technologies, appropriate choice of crop combinations in their farms, and the attainment of desirable levels of farm fragmentation.  相似文献   

9.
Polebitski, Austin S. and Richard N. Palmer, 2012. Analysis and Predictive Models of Single‐Family Customer Response to Water Curtailments During Drought. Journal of the American Water Resources Association (JAWRA) 1‐12. DOI: 10.1111/j.1752‐1688.2012.00691.x Abstract: This research investigates customer response to demand management strategies during two drought periods in the City of Seattle. An analysis of customer response to voluntary water curtailments is conducted using k‐means clustering to identify like groups of customers and behavior patterns. The clustering method identified important variables (household income, lot size, living space, and family size) useful in determining customer response to water curtailments. Ordinary least squares and spatial lag regression models are estimated using the first and second principal components of variables identified in the clustering analysis. Larger values of income, lot size, and living space enhanced water reductions whereas larger family size tended to reduce the effectiveness of curtailments. Projections of changes in Seattle’s built environment and demographics between 2000 and 2030 were obtained from an urban simulation model (UrbanSim) and were processed through the regression models to investigate changes in future curtailment effectiveness. This research found that increasing household size hardened demands (decreased curtailment effectiveness) whereas decreasing household size increased per‐capita curtailment effectiveness. These results suggest that changes in the number of residents within a home is likely to be the most important factor in determining future curtailment effectiveness.  相似文献   

10.
Since its implementation in 2015, the Middle Route of the South‐to‐North Water Diversion Project (MR‐SNWDP) has transferred an average of 45 billion cubic meters of surface water per year from the Yangtze River in southern China to the Yellow River and Hai River Basin in northern China, but how that supply is able to cope with droughts under different scenarios has not been explored. In this study, using the water demand for 2020 as the guaranteed water target, a Water Evaluation and Planning system was used to simulate available water supplies in Beijing under different drought scenarios. In the case of a single‐year drought, without the MR‐SNWDP, Beijing’s water shortage ratio was 16.7%; with the MR‐SNWDP, this ratio reduced to 7.3%. In the case of a multi‐year drought, without the MR‐SNWDP, Beijing’s water shortage ratio was 25.3%; with the MR‐SNWDP, this ratio reduced to 7.4% and domestic water supply was improved. Our research suggests that to prepare for multi‐year drought in the Beijing area, the SNWDP supports increased supplies to the region that would mitigate drought effects. This study is, however, mostly focused on water supply provision to Beijing and does not comprehensively evaluate other potential impacts. Multiple additional avenues could be pursued that include replenishing groundwater, increasing reservoir storage, and water conservation methods. Further research is needed to explore the relative costs and benefits of these approaches.  相似文献   

11.
Abstract: We describe relationships between pH, specific conductance, calcium, magnesium, chloride, sulfate, nitrogen, and phosphorus and land‐use patterns in the Mullica River basin, a major New Jersey Pinelands watershed, and determine the thresholds at which significant changes in water quality occur. Nonpoint sources are the main contributors of pollutants to surface waters in the basin. Using multiple regression and water‐quality data for 25 stream sites, we determine the percentage of variation in the water‐quality data explained by urban land and upland agriculture and evaluate whether the proximity of these land uses influences water‐quality/land‐use relationships. We use a second, independently collected water‐quality dataset to validate the statistical models. The multiple‐regression results indicate that water‐quality degradation in the study area is associated with basin‐wide upland land uses, which are generally good predictors of water‐quality conditions, and that both urban land and upland agriculture must be included in models to more fully describe the relationship between watershed disturbance and water quality. Including the proximity of land uses did not improve the relationship between land use and water quality. Ten‐percent altered‐land cover in a basin represents the threshold at which a significant deviation from reference‐site water‐quality conditions occurs in the Mullica River basin.  相似文献   

12.
This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values >0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida).  相似文献   

13.
Many reports have recognized the need for a national water census for the United States and have called upon the U.S. Geological Survey to undertake this challenge. For example, the National Science and Technology Council stated: “The United States has a strong need for an ongoing census of water that describes the status of our Nation's water resource at any point in time and identifies trends over time.” Responding to the need for this information, the U.S. Congress established the SECURE Water Act. The directives are to provide a more accurate assessment of the status of the water resources of the United States; determine the quantity of water available for beneficial uses; identify long‐term trends in water availability; assist in determination of the quality of the water resources; and develop the basis for an improved ability to forecast the availability of water for future economic, energy production, and environmental uses. This article provides summary and new information on the process and progress on work to estimate water budget components nationwide, involvement of stakeholder interests, efforts to examine water‐use characteristics throughout the Nation, studies of water availability in geographically focused areas and the initiation of methods to provide open access to existing and new water resources information contributing to Open Water Data Initiative (OWDI) efforts and objectives.  相似文献   

14.
Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental‐scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental‐extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1‐km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed‐scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed‐scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national‐scale categorization of snowmelt processes.  相似文献   

15.
ABSTRACT: The importance of estimating peak water demands for determining the dimensions of pipe size and meters which provide household water to multifamily residences is examined. Several methods utilized in North America and Europe are examined. The analysis makes clear the necessity of studying the peak water demand through statistics based on local data concerning multifamily residences. For different periods of return, the peak demand of a given apartment building is related to its size (the number of apartments) in order to compare the results obtained with existing formula. By use of Ridge-regression technique, the relationship between peak water demand, and building size (number of apartments) and available pressure is established. It can be concluded that peak demand can be estimated with the square root of number of apartment units in the building and the cube root of water pressure.  相似文献   

16.
ABSTRACT: Demand side management is being used increasingly by Ontario municipalities as a way to improve the efficiency of water use, defer the costs associated with constructing new water treatment works, and minimize the environmental impacts associated with supplying water. A comprehensive survey of 153 Ontario municipalities was completed in mid‐1998. These ranged in size from small rural townships (with populations as low as 500 people) to the province's largest urban center, Metropolitan Toronto, with a population of approximately 2.5 million people. The questionnaire measured the use of six broad types of demand side measures, including water pricing and metering; municipal by‐laws (ordinances) that promote water conservation; operational and maintenance measures to reduce water losses and consumption; water‐saving plumbing fixtures and devices; public participation programs that encourage water conservation; and other measures, such as water audits. Additionally, the survey collected data on implementation barriers and opportunities. Since the last comprehensive Ontario survey, conducted in 1987 by Kreutzwiser and Fea‐gan (1989), there has been an increase in the use of basic tools such as metering and pricing, plumbing fixtures, and public participation programs. Additionally, new initiatives, such as water audits and computerized monitoring equipment, are being used. However, in many areas opportunities exist to make better use of demand side measures. Unfortunately, municipal capacity to do so often is constrained by (among other factors) limited finances, lack of political will, and public resistance. Demonstration of real cost savings to consumers, and the development of specific goals and objectives for demand side management programs, are two important steps needed to overcome these challenges.  相似文献   

17.
Abstract: Many municipalities have implemented demand management of outdoor water use. Measures such as restrictions on lawn watering and promotion of xeriscaping are effective in reducing water demand during summer months, especially during dry spells. However, little research examines a key factor shaping the success of these programs: residents’ perceptions of and satisfaction with such conservation measures. This article describes an urban outdoor water conservation program in Guelph, Ontario, assesses that program from the perspective of residents, and explores socio‐economic, attitudinal and other factors associated with residents’ assessment of the program. A survey of Guelph residents revealed broad support for the program, which includes restrictions on various outdoor water uses and, under certain circumstances, a ban on lawn watering. However, there was much uncertainty among residents about the effectiveness of the program in reducing water use and the effectiveness of program enforcement. Key factors influencing residents’ assessment of the program were neighborhood, gender and environmental attitude. Implications for the design and implementation of outdoor water conservation programs are discussed, including the importance of better communication of information on program effectiveness and enforcement.  相似文献   

18.
Abstract: China has experienced a rapid land‐use/cover change (LUCC) during the 20th Century, and this process is expected to continue in the future. How LUCC has affected water resources across China, however, remains uncertain due to the complexity of LUCC‐water interactions. In this study, we used an integrated Dynamic Land Ecosystem Model (DLEM) in conjunction with spatial data of LUCC to estimate the LUCC effects on the magnitude, spatial and temporal variations of evapotranspiration (ET), runoff, and water yield across China. Through comparisons of DLEM results with other model simulations, field observations, and river discharge data, we found that DLEM model can adequately catch the spatial and seasonal patterns of hydrological processes. Our simulation results demonstrate that LUCC led to substantial changes in ET, runoff, and water yield in most of the China’s river basins during the 20th Century. The temporal and spatial patterns varied significantly across China. The largest change occurred during the second half century when almost all of the river basins had a decreasing trend in ET and an increasing trend in water yield and runoff, in contrast to the inclinations of ET and declinations of water yield in major river basins, such as Pearl river basin, Yangtze river basin, and Yellow river basin during the first half century. The increased water yield and runoff indicated alleviated water deficiency in China in the late 20th Century, but the increased peak flow might make the runoff difficult to be held by reservoirs. The continuously increasing ET and decreasing water yield in Continental river basin, Southwest river basin, and Songhua and Liaohe river basin implied regional water deficiency. Our study in China indicates that deforestation averagely increased ET by 138 mm/year but decreased water yield by the same amount and that reforestation averagely decreased ET by 422 mm/year since most of deforested land was converted to paddy land or irrigated cropland. In China, cropland‐related land transformation is the dominant anthropogenic force affecting water resources during the 20th Century. On national average, cropland expansion was estimated to increase ET by 182 mm/year while cropland abandonment decreased ET by 379 mm/year. Our simulation results indicate that urban sprawl generally decreased ET and increased water yield. Cropland managements (fertilization and irrigation) significantly increased ET by 98 mm/year. To better understand LUCC effects on China’s water resources, it is needed to take into account the interactions of LUCC with other environmental changes such as climate and atmospheric composition.  相似文献   

19.
Abstract: This study evaluates the effects of urban land use on stream channels and riparian ground‐water levels along low‐order Inner Coastal Plain streams in North Carolina. Six sites with stream catchments of similar size (1.19‐3.46 km2) within the Tar River Basin were selected across an urban land use gradient, as quantified by a range of catchment total impervious area (TIA; 3.8‐36.7%). Stream stage and ground‐water levels within three floodplain monitoring wells were measured manually and using pressure transducers from May 2006‐June 2007. Channel incision ratio (CIR), the ratio of bank height to bankfull height, was also measured at each monitoring site and along stream reaches within the study area (12 urban and 12 rural sites). Riparian ground‐water levels were inversely related to catchment TIA (%). As TIA (%) and stormwater runoff increased, the degree of stream channel incision increased and riparian ground‐water tables declined. In urban floodplains (>15% TIA), the median ground‐water level was 0.84 m deeper than for the rural settings (<15% TIA). This has resulted in a shift to drier conditions in the urban riparian zones, particularly during the summer months. CIR was found to be a reliable surface indicator of “riparian hydrologic drought” in these settings.  相似文献   

20.
The residential sector is the third largest sector of final energy use in Australian urban areas, accounting for about 12% of the country's total final energy consumption. What are the main determinants of energy consumption in the residential sector? This paper sheds light on this question by examining non-transport summer household energy consumption in Adelaide and Melbourne. Data were collected from a survey of 200 sample households and modelled according to a conceptual framework that not only emphasises household characteristics and housing stock characteristics but also controls the macro-environment factors. The findings reveal distinctive results in Adelaide and Melbourne. In Adelaide, household characteristics are the most important contributors in explaining non-transport household energy consumption. In Melbourne, the household characteristic as represented by income is important, but housing stock characteristics provide even more explanatory power. These findings contribute to the understanding of the factors that shape residential energy consumption and have policy implications in targeting household energy savings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号