首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of freshwater is a prerequisite for municipal development and agricultural production, especially in the arid and semiarid portions of the western United States (U.S.). Agriculture is the leading user of water in the U.S. Agricultural water use can be partitioned into green (derived from rainfall) and blue water (irrigation). Blue water can be further subdivided by source. In this research, we develop a hydrologic balance by 8‐Digit Hydrologic Unit Code using a combination of Soil and Water Assessment Tool simulations and available human water use estimates. These data are used to partition agricultural groundwater usage by sustainability and surface water usage by local source or importation. These predictions coupled with reported agricultural yield data are used to predict the virtual water contained in each ton of corn, wheat, sorghum, and soybeans produced and its source. We estimate that these four crops consume 480 km3 of green water annually and 23 km3 of blue water, 12 km3 of which is from groundwater withdrawal. Regional trends in blue water use from groundwater depletion highlight heavy usage in the High Plains, and small pockets throughout the western U.S. This information is presented to inform water resources debate by estimating the cost of agricultural production in terms of water regionally. This research illustrates the variable water content of the crops we consume and export, and the source of that water.  相似文献   

2.
Abstract:  This paper evaluates alternative approaches to management of interstate water resources in the United States (U.S.), including interstate compacts, interstate associations, federal‐state partnerships, and federal‐interstate compacts. These governance structures provide alternatives to traditional federalism or U.S. Supreme Court litigation for addressing problems that transcend political boundaries and functional responsibilities. Interstate compacts can provide a forum for ongoing collaboration and are popular mechanisms for allocating water rights among the states. Federal‐interstate compacts, such as the Delaware River Basin Compact and federal‐state partnerships, such as the National Estuary Program, are also effective and complementary approaches to managing water resources. However, all of these approaches can only make modest improvements in managing water resources given the complicated and fragmented nature of our federalist system of government.  相似文献   

3.
ABSTRACT: Water quality monitoring, as a function of society's efforts to manage the environment, is the contact mechanism that management and the public has with the actual water quality in the environment. Water quality monitoring has been studied extensively for many years to ensure that it produces information about water quality conditions. Current efforts to reduce government spending will have negative impacts on those government functions deemed to be non-responsive to the needs of the public. How well does water quality monitoring inform taxpayers about the status and trends in water quality conditions in the United States? This paper reviews a number of past efforts to “improve” water quality monitoring, discusses barriers to such improvement, and suggests ways that monitoring can be made more accountable for the information it should be producing for public understanding of water quality conditions. In particular, the need for standardization in data analysis and reporting of information to the public, is highlighted.  相似文献   

4.
An Open Water Data Initiative has been established by the federal government to enhance water information sharing across the United States (U.S.) using standardized web services for geospatial and temporal data. In a parallel effort, the National Weather Service has established a new National Water Center on the Tuscaloosa campus of the University of Alabama, at which a new National Water Model starts operations in June 2016, to continually simulate and forecast streamflow discharge throughout the continental U.S. These two developments support the interoperability of streamflow and hydrologic information in time and space from modeled and observed sources through the use of open standards to share water information.  相似文献   

5.
The U.S. Geological Survey is developing a new geospatial hydrographic framework for the United States, called the National Hydrography Dataset Plus High Resolution (NHDPlusHR), that integrates a diversity of the best‐available information, robustly supports ongoing dataset improvements, enables hydrographic generalization to derive alternate representations of the network while maintaining feature identity, and supports modern scientific computing and Internet accessibility needs. This framework is based on the High Resolution National Hydrography Dataset, the Watershed Boundaries Dataset, and elevation from the 3‐D Elevation Program, and will provide an authoritative, high precision, and attribute‐rich geospatial framework for surface‐water information for the United States. Using this common geospatial framework will provide a consistent basis for indexing water information in the United States, eliminate redundancy, and harmonize access to, and exchange of water information.  相似文献   

6.
In recent decades, public and private environmental entities have been purchasing or leasing water rights across the Western United States (U.S.) in efforts to restore river flows and aquatic ecosystems. The need to pay for flow restoration arises from the fact that state governments did not begin to reserve water for instream purposes until the 1970s, long after water rights had become over‐appropriated and flows were substantially depleted in most rivers. As a consequence, flow depletion has become the leading cause of fish endangerment in the U.S., including the imperilment of two‐thirds of all native fish species in the Colorado River system. This paper takes stock of the progress made in buying water for the environment, specifically by reviewing and analyzing more than 50 transactions executed by public and private entities and the sources of funding underpinning these transactions. We conclude that nongovernmental actors — such as environmental organizations and state water trusts — are integral to regional efforts to restore river flows; these nongovernmental actors executed more than two‐thirds of the transactions we documented. However, we also conclude that the long‐term success of these nongovernmental actors depends upon the availability of sustained public funding that enables them to build capacity and engage in the large number of transactions needed to restore flows across each state.  相似文献   

7.
Wise, Daniel R. and Henry M. Johnson, 2011. Surface‐Water Nutrient Conditions and Sources in the United States Pacific Northwest. Journal of the American Water Resources Association (JAWRA) 47(5):1110‐1135. DOI: 10.1111/j.1752‐1688.2011.00580.x Abstract: The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface‐water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency’s recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface‐water nutrient conditions and should be useful to environmental managers in future water‐quality planning efforts.  相似文献   

8.
This article (1) discusses existing efforts to measure water conservation policies (WCPs) in the United States (U.S.); (2) suggests general methodological guidelines for creating robust water conservation indices (WCIs); (3) presents a comprehensive template for coding WCPs; (4) introduces a summary index, the Vanderbilt Water Conservation Index (VWCI), which is derived from 79 WCP observations for 197 cities for the year 2015; and (5) compares the VWCI to WCP data extracted from the 2010 American Water Works Association (AWWA) Water and Wastewater Rates survey. Existing approaches to measuring urban WCPs in U.S. cities are limited because they consider only a portion of WCPs or they are restricted geographically. The VWCI consists of a more comprehensive set of 79 observations classified as residential, commercial/industrial, billing structure, drought plan, or general. Our comparison of the VWCI and AWWA survey responses indicate reasonable agreement (ρ = 0.76) between the two WCIs for 98 cities where the data overlap. The correlation suggests the AWWA survey responses can provide fairly robust longitudinal WCP information, but we argue the measurement of WCPs is still in its infancy, and our approach suggests strategies for improving existing methods.  相似文献   

9.
Establishing baseline hydrologic characteristics for lakes in the United States (U.S.) is critical to evaluate changes to lake hydrology. We used the U.S. Environmental Protection Agency National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water‐level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope‐derived parameters: evaporation‐to‐inflow (E:I) and water residence time. We present (1) national and regional distributions of the study variables for both natural and man‐made lakes and (2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; whereas in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope‐derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow‐through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was less than one year and was longer in natural vs. man‐made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.  相似文献   

10.
This article presents an analysis of the projected performance of urban residential rainwater harvesting systems in the United States (U.S.). The objectives are to quantify for 23 cities in seven climatic regions (1) water supply provided from rainwater harvested at a residential parcel and (2) stormwater runoff reduction from a residential drainage catchment. Water‐saving efficiency is determined using a water‐balance approach applied at a daily time step for a range of rainwater cistern sizes. The results show that performance is a function of cistern size and climatic pattern. A single rain barrel (190 l [50 gal]) installed at a residential parcel is able to provide approximately 50% water‐saving efficiency for the nonpotable indoor water demand scenario in cities of the East Coast, Southeast, Midwest, and Pacific Northwest, but <30% water‐saving efficiency in cities of the Mountain West, Southwest, and most of California. Stormwater management benefits are quantified using the U.S. Environmental Protection Agency Storm Water Management Model. The results indicate that rainwater harvesting can reduce stormwater runoff volume up to 20% in semiarid regions, and less in regions receiving greater rainfall amounts for a long‐term simulation. Overall, the results suggest that U.S. cities and individual residents can benefit from implementing rainwater harvesting as a stormwater control measure and as an alternative source of water.  相似文献   

11.
ABSTRACT: Water is potentially one of the most affected resources as climate changes. Though knowledge and understanding has steadily evolved about the nature and extent of many of the physical effects of possible climate change on water resources, much less is known about the economic responses and impacts that may emerge. Methods and results are presented that examine and quantify many of the important economic consequences of possible climate change on U.S. water resources. At the core of the assessment is the simulation of multiple climate change scenarios in economic models of four watersheds. These Water Allocation and Impact Models (Water‐AIM) simulate the effects of modeled runoff changes under various climate change scenarios on the spatial and temporal dimensions of water use, supply, and storage and on the magnitude and distribution of economic consequences. One of the key aspects and contributions of this approach is the capability of capturing economic response and adaptation behavior of water users to changes in water scarcity. By reflecting changes in the relative scarcity (and value) of water, users respond by changing their patterns of water use, intertemporal storage in reservoirs, and changes in the pricing of water. The estimates of economic welfare change that emerge from the Water‐AIM models are considered lower‐bound estimates owing to the conservative nature of the model formulation and key assumptions. The results from the Water‐AIM models form the basis for extrapolating impacts to the national level. Differences in the impacts across the regional models are carried through to the national assessment by matching the modeled basins with basins with similar geographical, climatic, and water use characteristics that have not been modeled and by using hydro‐logic data across all U.S. water resources regions. The results from the national analysis show that impacts are borne to a great extent by nonconsumptive users that depend on river flows, which rise and fall with precipitation, and by agricultural users, primarily in the western United States, that use a large share of available water in relatively low‐valued uses. Water used for municipal and industrial purposes is largely spared from reduced availability because of its relatively high marginal value. In some cases water quality concerns rise, and additional investments may be required to continue to meet established guidelines.  相似文献   

12.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   

13.
Water is a salient issue in the Intermountain West of the United States (U.S.), with concerns ranging from water scarcity and drought to intermittent flooding and water quality risks. This paper investigates coverage of water issues across seven newspapers in the core of the U.S. Intermountain West region. Newspapers have the potential to set agendas and influence perceived salience of issues among consumers. The Intermountain West region shares common concerns about water supply and demand, climate change, and water quality. We investigate whether or not local daily newspaper coverage of water issues provides a more local or regional sensitivity. Findings from this exploratory study reveal differences in water coverage across local daily newspapers. The overall volume of water‐related articles differed across newspapers as did proportion of articles on specific water topics and connecting issues. Coverage of local issues was more dominant than might be expected given mass media trends, but water geography in articles extended across the U.S. and the world in every newspaper studied. Variations in newspaper coverage of water issues suggests more local nuance persists despite the experience of common water issues across the region.  相似文献   

14.
Miller, W. Paul and Thomas C. Piechota, 2011. Trends in Western U.S. Snowpack and Related Upper Colorado River Basin Streamflow. Journal of the American Water Resources Association (JAWRA) 47(6):1197–1210. DOI: 10.1111/j.1752‐1688.2011.00565.x Abstract: Water resource managers in the Western United States (U.S.) are currently faced with the challenge of adapting to unprecedented drought and uncertain impacts of climate change. Recent research has indicated increasing regional temperature and changes to precipitation and streamflow characteristics throughout the Western U.S. As such, there is increased uncertainty in hydroclimatological forecasts, which impact reservoir operations and water availability throughout the Western U.S., particularly in the Colorado River Basin. Previous research by the authors hypothesized a change in the character of precipitation (i.e., the frequency and amount of rainfall and snowfall events) throughout the Colorado River Basin. In the current study, 398 snowpack telemetry stations were investigated for trends in cumulative precipitation, snow water equivalent, and precipitation events. Observations of snow water equivalent characteristics were compared to observations in streamflow characteristics. Results indicate that the timing of the last day of the snow season corresponds well to the volume of runoff observed over the traditional peak flow season (April through July); conversely, the timing of the first day of the snow season does not correspond well to the volume of runoff observed over the peak flow season. This is significant to water resource managers and river forecasters, as snowpack characteristics may be indicative of a productive or unproductive runoff season.  相似文献   

15.
Good information and data on water demands are needed to perform good analyses, yet collecting and compiling spatially and temporally consistent water demand data are challenges. The objective of our work was to understand the limitations associated with water‐use estimates and projections. We performed a comprehensive literature review of national and regional United States (U.S.) water‐use estimates and projections. We explored trends in past regional projections of freshwater withdrawals and compared these values to regional estimates of freshwater withdrawals made by the U.S. Geological Survey. Our results suggest a suite of limitations exist that have the potential for influencing analyses aiming to extract explanatory variables from the data or using the data to make projections and forecasts. As we explored regional projections, we paid special attention to the two largest water demand‐side sectors — thermoelectric energy and irrigation — and found thermoelectric projections are more spread out than irrigation projections. All data related to water use have limitations, and there is no alternative to making the best use that we can of the available data; our article provides a comprehensive review of these limitations so that water managers can be more informed.  相似文献   

16.
The ages-old and ever-growing need for communication and information retrieval among scientists has found expression in the development of indexes, abstracts, reviews and combinations or variations of such. A short review of such efforts is followed by a discussion of efforts along these lines in the new field of water resources science and technology. Such undertakings as the Information Retrieval System of the American Society of Civil Engineers and of the U.S. Water Resources Research Office are compared with that of the American Water Resources Association.  相似文献   

17.
Anticipated future increases in air temperature and regionally variable changes in precipitation will have direct and cascading effects on United States (U.S.) water quality. In this paper, and a companion paper by Coffey et al., we review technical literature addressing the responses of different water quality attributes to historical and potential future changes in air temperature and precipitation. The goal is to document how different attributes of water quality are sensitive to these drivers, to characterize future risk to inform management responses, and to identify research needs to fill gaps in our understanding. Here we focus on potential changes in streamflow, water temperature, and salt water intrusion (SWI). Projected changes in the volume and timing of streamflow vary regionally, with general increases in northern and eastern regions of the U.S., and decreases in the southern Plains, interior Southwest, and parts of the Southeast. Water temperatures have increased throughout the U.S. and are expected to continue to increase in the future, with the greatest changes in locations where high summer air temperatures occur together with low streamflow volumes. In coastal areas, especially the mid‐Atlantic and Gulf coasts, SWI to rivers and aquifers could be exacerbated by sea level rise, storm surges, and altered freshwater runoff. Management responses for reducing risks to water quality should consider strategies and practices robust to a range of potential future conditions.  相似文献   

18.
Riverine nitrate (NO3) is a well‐documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long‐term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long‐term data availability and to represent a range of climate and land‐use conditions. We examined NO3 at the monitoring stations, using a flow‐weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945‐1980 at most of the stations and have remained elevated, but stopped increasing during 1981‐2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century‐scale dataset adds to our understanding of long‐term NO3 patterns in the U.S.  相似文献   

19.
National Water Model (NWM) simulates the hydrologic cycle and produces streamflow forecasts for 2.7 million reaches in the National Hydrography Dataset for continental United States (U.S.). NWM uses Muskingum–Cunge channel routing, which is based on the continuity equation. However, the momentum equation also needs to be considered to obtain more accurate estimates of streamflow and stage in rivers, especially for applications such as flood‐inundation mapping. Here, we used a steady‐state backwater version of Simulation Program for River NeTworks (SPRNT) model. We evaluated SPRNT’s and NWM’s abilities to predict inundated area for the record flood of Hurricane Matthew in October 2016. The Neuse River experienced record‐breaking floods and was well‐documented by U.S. Geological Survey. Streamflow simulations from NWM retrospective analysis were used as input for the SPRNT simulation. Retrospective NWM discharge predictions were converted to stage. The stages (from both SPRNT and NWM) were utilized to produce flood‐inundation maps using the Height Above Nearest Drainage method which uses the local relative heights to find out the local draining potentials and provide spatial representation of inundated area. The inundated‐area accuracies for NWM and SPRNT (based on comparison to a remotely sensed dataset) were 65.1% and 67.6%, respectively. These results show using steady‐state SPRNT results in a modest improvement of inundation‐forecast accuracy compared to NWM.  相似文献   

20.
Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号