首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient load allocations and subsequent reductions in total nitrogen and phosphorus have been applied in the Chesapeake watershed since 1992 to reduce hypoxia and to restore living resources. In 2010, sediment allocations were established to augment nutrient allocations supporting the submerged aquatic vegetation resource. From the initial introduction of nutrient allocations in 1992 to the present, the allocations have become more completely applied to all areas and loads in the watershed and have also become more rigorously assessed and tracked. The latest 2010 application of nutrient and sediment allocations were made as part of the Chesapeake Bay total maximum daily load and covered all six states of the Chesapeake watershed. A quantitative allocation process was developed that applied principles of equity and efficiency in the watershed, while achieving all tidal water quality standards through an assessment of equitable levels of effort in reducing nutrients and sediments. The level of effort was determined through application of two key watershed scenarios: one where no action was taken in nutrient control and one where maximum nutrient control efforts were applied. Once the level of effort was determined for different jurisdictions, the overall load reduction was set watershed‐wide to achieve dissolved oxygen water quality standards. Further adjustments were made to the allocation to achieve the James River chlorophyll‐a standard.  相似文献   

2.
Abstract:  Data interpretation and visualization software tools with geostatistical capabilities were adapted, customized, and tested to assist the Chesapeake Bay Program in improving its water‐quality modeling protocols. Tools were required to interpolate, map, and visualize three‐dimensional (3D) water‐quality data, with the capability to determine estimation errors. Components of the software, originally developed for ground‐water modeling, were customized for application in estuaries. Additional software components were developed for retrieval, and for pre‐ and post‐ processing of data. The Chesapeake Bay Program uses the 3D mapped data for input to the Bay water‐quality model that projects the future health of the Bay and its tidal tributary system. In determining water‐quality attainment criteria, 3D kriging estimation errors are needed as a statistical measure of uncertainty. Furthermore, given the high cost of installing and operating new monitoring stations, geostatistical techniques can assist the Chesapeake Bay Program in the identification of suitable data collection locations. Following the evaluation, selection, and development of the software components phase, 3D ordinary kriging techniques with directional semi‐variograms to account for anisotropy were successfully demonstrated for mapping 3D fixed station water‐quality data, such as dissolved oxygen and salinity. Additionally, an improved delineation tool was implemented to simulate the upper and lower pycnocline boundary surfaces allowing the segregation of the interpolated 3D data into three separate zones for a better characterization of the pycnocline layer.  相似文献   

3.
This article analyzes the correlations of the observed and modeled light attenuation coefficient, Kd, with in situ total suspended solids (TSS) and chlorophyll‐a concentrations in Chesapeake Bay (CB) tidal waters, and with sediment and nutrient loads from the Chesapeake watershed. Light attenuation is closely related to in situ TSS and chlorophyll‐a concentrations, however, the strength of the correlation differs among the CB segments. There are distinct differences between saline and tidal fresh segments in the main Bay, but less distinction among saline and tidal fresh segments in the tidal tributaries. The correlation between Kd with sediment and nutrient loads is complicated by the lag times of TSS and the chlorophyll‐a responses to reductions in nutrient and sediment loads from the watershed, and also due to the diverse load sources. Three sets of model sensitivity scenarios were performed with: (1) differential sediment and nutrient loads; (2) selective sediment source types; and (3) geographically isolated inputs. The model results yield similar findings as those based on observed data and provide information regarding the effect of sediment on specific water bodies. Based on the model results a method was developed to determine sediment and nutrient load reductions needed to achieve the water clarity standards of the CB segments.  相似文献   

4.
Applications of Total Maximum Daily Load (TMDL) criteria for complex estuarine systems like Chesapeake Bay have been limited by difficulties in estimating precisely how changes in input loads will impact ambient water quality. A method to deal with this limitation combines the strengths of the Chesapeake Bay's Water Quality Sediment Transport Model (WQSTM), which simulates load response, and the Chesapeake Bay Program's robust historical monitoring dataset. The method uses linear regression to apply simulated relative load responses to historical observations of water quality at a given location and time. Steps to optimize the application of regression analysis were to: (1) determine the best temporal and spatial scale for applying the WQSTM scenarios, (2) determine whether the WQSTM method remained valid with significant perturbation from calibration conditions, and (3) evaluate the need for log transformation of both dissolved oxygen (DO) and chlorophyll a (CHL) datasets. The final method used simple linear regression at the single month, single WQSTM grid cell scale to quantify changes in DO and CHL resulting from simulated load reduction scenarios. The resulting linear equations were applied to historical monitoring data to produce a set of “scenario‐modified” DO or CHL concentration estimates. The utility of the regression method was validated by its ability to estimate progressively increasing attainment in support of the 2010 Chesapeake Bay TMDL.  相似文献   

5.
The Phase 5.3 Watershed Model simulates the Chesapeake watershed land use, river flows, and the associated transport and fate of nutrient and sediment loads to the Chesapeake Bay. The Phase 5.3 Model is the most recent of a series of increasingly refined versions of a model that have been operational for more than two decades. The Phase 5.3 Model, in conjunction with models of the Chesapeake airshed and estuary, provides estimates of management actions needed to protect water quality, achieve Chesapeake water quality standards, and restore living resources. The Phase 5.3 Watershed Model tracks nutrient and sediment load estimates of the entire 166,000 km2 watershed, including loads from all six watershed states. The creation of software systems, input datasets, and calibration methods were important aspects of the model development process. A community model approach was taken with model development and application, and the model was developed by a broad coalition of model practitioners including environmental engineers, scientists, and environmental managers. Among the users of the Phase 5.3 Model are the Chesapeake watershed states and local governments, consultants, river basin commissions, and universities. Development and application of the model are described, as well as key scenarios ranging from high nutrient and sediment load conditions if no management actions were taken in the watershed, to low load estimates of an all‐forested condition.  相似文献   

6.
Many living resources in the Chesapeake Bay estuary have deteriorated over the past 50 years. As a result, many governmental committees, task forces, and management plans have been established. Most of the recommendations for implementing a bay cleanup focus on reducing sediments and nutrient flow into the watershed. We emphasize that habitat requirements other than water quality are necessary for the recovery of much of the bay's avian wildlife, and we use a waterbird example as illustration. Some of these needs are: (1) protection of fast-eroding islands, or creation of new ones by dredge deposition to improve nesting habitat for American black ducks(Anas rubripes), great blue herons(Ardea herodias), and other associated wading birds; (2) conservation of remaining brackish marshes, especially near riparian areas, for feeding black ducks, wading birds, and wood ducks(Aix sponsa); (3) establishment of sanctuaries in open-water, littoral zones to protect feeding and/or roosting areas for diving ducks such as canvasbacks(Aythya valisineria) and redheads(Aythya americana), and for bald eagles(Haliaeetus leucocephalus); and (4) limitation of disturbance by boaters around nesting islands and open-water feeding areas. Land (or water) protection measures for waterbirds need to include units at several different spatial scales, ranging from “points” (e.g., a colony site) to large-area resources (e.g., a marsh or tributary for feeding). Planning to conserve large areas of both land and water can be achieved following a biosphere reserve model. Existing interagency committees in the Chesapeake Bay Program could be more effective in developing such a model for wildlife and fisheries resources.  相似文献   

7.
Application of integrated Chesapeake Bay models of the airshed, watershed, and estuary support air and water nitrogen controls in the Chesapeake. The models include an airshed model of the Mid‐Atlantic region which tracks the estimated atmospheric deposition loads of nitrogen to the watershed, tidal Bay, and adjacent coastal ocean. The three integrated models allow tracking of the transport and fate of nitrogen air emissions, including deposition in the Chesapeake watershed, the subsequent uptake, transformation, and transport to Bay tidal waters, and their ultimate influence on Chesapeake water quality. This article describes the development of the airshed model, its application to scenarios supporting the Chesapeake Total Maximum Daily Load (TMDL), and key findings from the scenarios. Key findings are that the atmospheric deposition loads are among the largest input loads of nitrogen in the watershed, and that the indirect nitrogen deposition loads to the watershed, which are subsequently delivered to the Bay are larger than the direct loads of atmospheric nitrogen deposition to Chesapeake tidal waters. Atmospheric deposition loads of nitrogen deposited in coastal waters, which are exchanged with the Chesapeake, are also estimated. About half the atmospheric deposition loads of nitrogen originate from outside the Chesapeake watershed. For the first time in a TMDL, the loads of atmospheric nitrogen deposition are an explicit part of the TMDL load reductions.  相似文献   

8.
Chesapeake Bay has been the subject of intensive research on cultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce controllable sources of nitrogen (N) and phosphorous (P) by 40% by the year 2000, although the causes and effects of eutrophication were incompletely known. Subsequent research, modeling, and monitoring have shown that: (i) the estuarine ecosystem had been substantially altered by increased loadings of N and P of approximately 7- and 18-fold, respectively; (ii) hypoxia substantially increased since the 1950s; (iii) eutrophication was the major cause of reductions in submerged vegetation; and (iv) reducing nutrient sources by 40% would improve water quality, but less than originally thought. Strong public support and political commitment have allowed the Chesapeake Bay Program to reduce nutrient inputs, particularly from point sources, by 58% for P and 28% for N. However, reductions of nonpoint sources of P and N were projected by models to reach only 19% and 15%, respectively, of controllable loadings. The lack of reductions in nutrient concentrations in some streams and tidal waters and field research suggest that soil conservation-based management strategies are less effective than assumed. In 1997, isolated outbreaks of the toxic dinoflagellate Pfiesteria piscicida brought attention to the land application of poultry manure as a contributing factor to elevated soil P and ground water N concentrations. In addition to developing more effective agricultural practices, emerging issues include linking eutrophication and living resources, reducing atmospheric sources of N, enhancing nutrient sinks, controlling sprawling suburban development, and predicting and preventing harmful algal blooms.  相似文献   

9.
The EEC Shellfish Directive is a policy designed to protect and, where necessary, improve the quality of designated shellfish waters. Its implementation within the UK, however, has had no effect upon water quality for two reasons. First, the policy has important defects, having ambiguities concerning public health provisions and lacking designation criteria. Second, UK government has sought to achieve formal compliance, while at the same time ensuring that its full financial impact on public expenditure has been contained. Consequently, only those fisheries which already comply with water quality standards have been designated. Within Wales, one fishery has been designated, while other, commercially more important, but grossly contaminated shellfisheries have not.  相似文献   

10.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

11.
ABSTRACT: As part of its overall system for protecting aquatic systems from unnecessary degradation, the State of Florida provides special protection for water bodies of unusual importance. Such water bodies are designated as “Outstanding Florida Waters” (OFW5). New discharges to OFWs are possible only if certain stringent criteria are met. A new point source direct discharge to an OFW is usually not allowed if it would cause any lowering of ambient water quality. A new indirect discharge (upstream from an OFW boundary) may be allowed only if it would not significantly degrade the OFW. To date, the advantages of the OFW system have clearly outweighed the disadvantages, and OFW designations are helping to protect Florida's most valuable waters from additional degradation. Florida's system could be a useful model for other jurisdictions wanting to provide special protection to special water bodies.  相似文献   

12.
During the period of 1972 through 1993, Environmental Concern Inc. (EC) and its recent (1989) affiliate Environmental Construction Company (ECC) have completed 216 marsh construction projects to control upland bank erosion in tributaries of the Maryland portion of Chesapeake Bay. Of these projects, 26 have involved marsh construction on unaltered existing shores and 190 have utilized marsh construction on shores that have been restored to former increased elevations through shoreline filling and grading. This paper describes the latter restoration technique. Throughout the 21-year period of applying the technique for long-term upland bank erosion control, refinements to the design standards and criteria for site suitability have been made so as to optimize its successful application. As a result of this experience, a reliable bioengineering restoration technique has evolved to control upland bank erosion. This paper describes the details of this successful technique through a review of: (1) its objectives and benefits, (2) suitability of sites for its application, (3) the design of its shore restoration, (4) its construction, (5) its maintenance, and (6) comparison of its cost with those of structural techniques for bank erosion control. Although the technique has only been applied in the Maryland portions of Chesapeake Bay, its applicability should, with modifications, be broadly applicable to all water bodies.  相似文献   

13.
Ecological risk assessment (ERA) evaluates potential causal relationships between multiple sources and stressors and impacts on valued ecosystem components. ERAs applied at the watershed scale have many similarities to the place-based analyses that are undertaken to develop Total Maximum Daily Loads (TMDLs), in which linkages are established between stressors, sources, and water quality standards, including support of designated uses. TMDLs focus on achieving water quality standards associated with attainment of designated uses. In attempting to attain the water quality standard, many TMDLs focus on the stressor of concern rather than the ecological endpoint or indicators of the designated use that the standard is meant to protect. A watershed ecological risk assessment (WERA), at least in theory, examines effects of most likely stressors, as well as their probable sources in the watershed, to prioritize management options that will most likely result in meeting environmental goals or uses. Useful WERA principles that can be applied to TMDL development include: development and use of comprehensive conceptual models in the Problem Identification step of TMDLs; use of a transparent process for selecting Numeric Targets for TMDLs based on assessment endpoints derived from the management goal or designated use under consideration; analysis of co-occurring stressors likely to cause beneficial use impairment based on the conceptual model; use of explicit uncertainty analyses in the Linkage Analysis step of TMDL development; and frequent stakeholder interactions throughout the process. WERA principles are currently most applicable to those TMDLs in which there is no numeric standard and, therefore, indicators and targets need to be developed, such as many nutrient or sediment TMDLs. WERA methods can also be useful in determining TMDL targets in situations where simply targeting the water quality standard may re-attain the numeric criterion but not the broader designated use. Better incorporation of problem formulation principles from WERA into the TMDL development process would be helpful in improving the scientific rigor of TMDLs.  相似文献   

14.
ABSTRACT: Changes in global climate may alter hydrologic conditions and have a variety of effects on human settlements and ecological systems. The effects include changes in water supply and quality for domestic, irrigation, recreational, commercial, and industrial uses; in instream flows that support aquatic ecosystems, recreation uses, hydropower, navigation, and wastewater assimilation; in wetland extent and productivity that support fish, wildlife, and wastewater assimilation; and in the frequency and severity of floods. Watersheds where water resources are stressed under current climate are most likely to be vulnerable to changes in mean climate and extreme events. This study identified key aspects of water supply and use that could be adversely affected by climate change, developed measures and criteria useful for assessing the vulnerability of regional water resources and water dependent resources to climate change, developed a regional database of water sensitive variables consistent with the vulnerability measures, and applied the criteria in a regional study of the vulnerability of U.S. water resources. Key findings highlight the vulnerability of consumptive uses in the western and, in particular, the southwestern United States. However, southern United States watersheds are relatively more vulnerable to changes in water quality, flooding, and other instream uses.  相似文献   

15.
ABSTRACT: Base-flow samples were collected from 47 sampling sites for four seasons from 1990–91 on the Delmarva Peninsula in Delaware and Maryland to relate stream chemistry to a “hydrologic landscape” and season. Two hydrologic landscapes were determined: (1) a well-drained landscape, characterized by a combination of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained landscape, characterized by a combination of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slope. Concentrations of nitrogen were significantly related to the hydrologic landscape. Nitrogen concentrations tended to be higher in well-drained landscapes than in poorly drained ones. The highest instantaneous nitrogen yields occurred in well-drained landscapes during the winter. These yields were extrapolated over the part of the study area draining to Chesapeake Bay in order to provide a rough estimate of nitrogen load from base flow to the Bay and its estuarine tributaries. This estimate was compared to an estimate made by extrapolating from an existing long-term monitoring station. The load estimate from the stream survey data was 5 ± 106 kg of N per year, which was about four times the estimate, made from the existing long-term monitoring station. The stream-survey estimate of base flow represents about 40 percent of the total nitrogen load that enters the Bay and estuarine tributaries from all sources in the study area.  相似文献   

16.
国内外的研究都表明,从保护人类、野生动植物和自然生态环境健康角度出发,按照水体自然属性并结合人类对水体的使用和保护要求对水体进行功能划分,制定合理与水体使用功能相适应的水环境质量标准,并采取控制措施使水体水质达到该标准,是既合理、经济,又能有效保护水环境的方法.其关键是如何按照水质标准对水环境质量进行客观准确评价,这既是保护水环境的基础性工作,直接关系到水环境保护和排污控制措施的有效性,也是我国目前急需解决的重要课题.本文首先对美国水环境质量评价方法体系作了概要介绍,然后对我国水环境质量评价现状进行分析,通过对比美国和我国的水环境质量评价方法,对我国水环境质量评价提出了建议和研究方向.  相似文献   

17.
ABSTRACT: Timber harvest best management practices (BMPs) in Washington State were evaluated to determine their effectiveness at achieving water quality standards pertaining to sediment related effects. A weight‐of‐evidence approach was used to determine BMP effectiveness based on assessment of erosion with sediment delivery to streams, physical disturbance of stream channels, and aquatic habitat conditions during the first two years following harvest. Stream buffers were effective at preventing chronic sediment delivery to streams and physical disturbance of stream channels. Practices for ground‐based harvest and cable yarding in the vicinity of small streams without buffers were ineffective or only partially effective at preventing water quality impacts. The primary operational factors influencing BMP effectiveness were: the proximity of ground disturbing activities to streams; presence or absence of designated stream buffers; the use of special timber falling and yarding practices intended to minimize physical disturbance of stream channels; and timing of harvest to occur during snow cover or frozen ground conditions. Important site factors included the density of small streams at harvest sites and the steepness of inner stream valley slopes. Recommendations are given for practices that provide a high confidence of achieving water quality standards by preventing chronic sediment delivery and avoiding direct stream channel disturbance.  相似文献   

18.
Abstract: Measured atrazine concentrations in Nebraska surface water have been shown to exceed water‐quality standards, posing risks to humans and to the ecosystem. To assess this risk, atrazine runoff was simulated at the field‐scale in Nebraska based on the pesticide component of the AGNPS model. This project’s objective was to determine the frequency that the atrazine concentration at the field outlet exceeded three different atrazine water‐quality criteria. The simulation was conducted for different farm management practices, soil moisture conditions, and five Nebraska topographic regions. If the criteria were exceeded, a risk to the drinking water consumer or freshwater aquatic life was hypothesized to exist. Three pesticide fate and transport processes were simulated with the model. Degradation was simulated using first‐order kinetics. Adsorption/desorption was modeled assuming a linear soil‐water partitioning coefficient. Advection (runoff) was based primarily on the USDA‐NRCS curve number method. Daily rainfall from the National Weather Service was used to compute the soil moisture conditions for the 1985‐2000 growing seasons. After each runoff event, the pesticide runoff concentration was compared with each of the three atrazine water‐quality criteria. The results show that environmental receptors (i.e., freshwater aquatic species) are exposed to unacceptable atrazine runoff concentrations in 20‐50% of the runoff events.  相似文献   

19.
Abstract: Total Maximum Daily Load (TMDL) implementation generates benefits and costs from water quality improvements, which are rarely quantified. This analysis examines a TMDL written to address bacteria and aquatic‐life‐use impairments on Abrams and Opequon Creeks in Virginia. Benefits were estimated using a contingent valuation survey of local residents. Costs were based on the number and type of best management practices (BMPs) necessary to achieve TMDL pollution reduction goals. BMPs were quantified using watershed‐scale water quality simulation models (Generalized Watershed Loading Function and Hydrological Simulation Program‐FORTRAN). Based on our projections, the costs to achieve TMDL induced pollution reduction goals outweigh the estimated benefits. Benefit‐cost ratios ranged between 0.1 and 0.3.  相似文献   

20.
Abstract: The effects of natural flow restoration on metals fate and transport in the Upper Tenmile Creek Watershed, Montana, were modeled using the Water Quality Analysis Simulation Program developed by the U.S. Environmental Protection Agency (USEPA). This 50‐km2 watershed has over 150 historic abandoned mines, including mine waste rock and tailings, as well as adits discharging acid mine drainage, and is the primary drinking water supply for the City of Helena. Water supply diversions almost completely dewater some stream reaches during summer low flows, but the city is considering a new drinking water source and restoration of natural flows in Tenmile Creek as part of acid mine drainage remediation and broader aquatic habitat restoration. One dimensional steady‐state simulation of total recoverable cadmium, copper, lead, and zinc in the mainstem was performed, and the model was calibrated to June 2000 base‐flow data. Representative low‐flows in August and high‐flow snowmelt conditions in June were modeled using mean monthly natural flow estimates from the U.S. Geological Survey and representative USEPA metals concentrations data. The modeling showed that total recoverable metals concentrations, and especially loads, can vary significantly among input locations and over time in the watershed. Some data gaps limit evaluation of variability and increase uncertainty in several locations. Model results indicated, however, that natural low‐ and high‐flow restoration by itself can reduce some metals concentrations in the mainstem compared to June 2000 values, which were influenced by significant water diversion. Some values (such as Zn) may still exceed standards during natural August low flow due to the remaining high concentrations and loads in the primary inputs to the mainstem. Others (such as Cu) can increase during high flow due to remaining mine waste sources and loading of particulate Cu associated with erosion and transport of solids. Greater than 50% reduction in concentrations and loads from some of the main tributaries may be necessary to meet all standards, especially for potential particulate loads with higher flows in June.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号