首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: A systematic method for identification and estimation of regional scale stressor‐response models in aquatic ecosystems will be useful in monitoring and assessment of aquatic resources, determination of regional nutrient criteria and for increased understanding of the differences between regions. The model response variable is chlorophyll a, a measure of algal density, while the stressors include nutrient concentrations from the USEPA Nutrient Criteria Database (NCD) for lakes/ponds and reservoirs of the continental United States. The NCD has observations for both stressors and biological responses determined using methods that are not consistently available at the continental scale. To link multiple environmental stressors to biological responses and quantify uncertainty in model predictions, we take a multilevel modeling approach to the estimation of a linear model for prediction of log Chlorophyll a using predictors log TP and log TN. The multilevel modeling approach allows us to adjust the impact of covariates at all levels (observation, higher level groups) for the simultaneous operation of contextual and individual variability in the outcome. Here, we wish to allow separate regression coefficients for inference regarding similarities and differences between each of 14 ecoregions, and between the two water‐body types, lakes/ponds and reservoirs. We are also interested in the nuisance effects of the categorical variables indicating the type of nitrogen measurements (three levels) and the type of chlorophyll a measurements (four levels) used. Model‐based determination of nutrient criteria points to an apparent incompatibility of criteria developed for nutrient stressors and eutrophication responses using current Environmental Protection Agency’s guidance.  相似文献   

2.
Defining Chlorophyll-a Reference Conditions in European Lakes   总被引:2,自引:0,他引:2  
The concept of “reference conditions” describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator—the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between “high” and “good” status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets.  相似文献   

3.
Implementation of the EU Water Framework Directive will call for new lake monitoring and management strategies. Therefore, different methods need to be tested in order to achieve reliable assessment of lake background conditions and water quality. Sediment-based techniques provide one such tool for lake management. In this work, 10 lakes, presumed to be naturally eutrophic, were investigated with a paleolimnological short core study. The aim of the study was to examine the composition of the diatom assemblages in their natural state, estimate their change over time and assess the background nutrient levels. One sediment profile from each lake was divided into six sub-samples that were analyzed for diatoms (60 samples). Diatom-based inference models were applied to reconstruct the past total phosphorus concentration and assess the eutrophication. The results indicated that all the lakes studied had already been nutrient-rich before the impact of modern agriculture. However, diatom assemblages have changed remarkably over time and total phosphorus concentrations have generally increased, so at present only two of the study lakes are close to their natural status. This suggests that naturally eutrophic lakes will probably require management actions to fulfill the new directive requirements in the future.  相似文献   

4.
Establishing baseline hydrologic characteristics for lakes in the United States (U.S.) is critical to evaluate changes to lake hydrology. We used the U.S. Environmental Protection Agency National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water‐level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope‐derived parameters: evaporation‐to‐inflow (E:I) and water residence time. We present (1) national and regional distributions of the study variables for both natural and man‐made lakes and (2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; whereas in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope‐derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow‐through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was less than one year and was longer in natural vs. man‐made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.  相似文献   

5.
Abstract: Relationships between nutrient concentrations and fish nutrient tolerance were assessed relative to established nutrient criteria. Fish community, nitrate plus nitrite (nitrate), and total phosphorus (TP) data were collected during summer low‐flow periods in 2003 and 2004 at stream sites along a nutrient‐enrichment gradient in an agricultural basin in Indiana and Ohio and an urban basin in the Atlanta, Georgia, area. Tolerance indicator values for nitrate and TP were assigned for each species and averaged separately for fish communities at each site (TIVo). Models were used to predict fish species expected to occur at a site under minimally disturbed conditions and average tolerance indicator values were determined for nitrate and TP separately for expected communities (TIVe). In both areas, tolerance scores (TIVo/TIVe) for nitrate increased significantly with increased nitrate concentrations whereas no significant relationships were detected between TP tolerance scores and TP concentrations. A 0% increase in the tolerance score (TIVo/TIVe = 1) for nitrate corresponded to a nitrate concentration of 0.19 mg/l (compared with a USEPA summer nitrate criterion of 0.17 mg/l) in the urban area and 0.31 mg/l (compared with a USEPA summer nitrate criterion of 0.86 mg/l) in the agricultural area. Fish nutrient tolerance values offer the ability to evaluate nutrient enrichment based on a quantitative approach that can provide insights into biologically relevant nutrient criteria.  相似文献   

6.
An initial inquiry into model‐based numeric nitrogen and phosphorus (nutrient) criteria for large rivers is presented. Field data collection and associated modeling were conducted on a segment of the lower Yellowstone River in the northwestern United States to assess the feasibility of deriving numeric nutrient criteria using mechanistic water‐quality models. The steady‐state one‐dimensional model QUAL2K and a transect‐based companion model AT2K were calibrated and confirmed against low‐flow conditions at a time when river loadings, water column chemistry, and diurnal indicators were approximately steady state. Predictive simulation was then implemented via nutrient perturbation to evaluate the steady‐state and diurnal response of the river to incremental nutrient additions. In this first part of a two‐part series, we detail our modeling approach, model selection, calibration and confirmation, sensitivity analysis, model outcomes, and associated uncertainty. In the second part (Suplee et al., 2015) we describe the criteria development process using the tools described herein. Both articles provide a fundamental understanding of the process required to develop site‐specific numeric nutrient criteria using models in applied regulatory settings.  相似文献   

7.
ABSTRACT: The applicability of empirical relationships governing phosphorus (P) retention and nutrient assimilation in lakes and reservoirs was extended to include free surface water wetland treatment systems. Mixed reactor models have been used in lakes to predict steady state P concentration, characterize trophic state, compare P‐dynamics, and predict permissible P‐loading rates. Applying lake models to free surface water wetlands treatment systems, it was found that: sedimentation rates, loading rates, and settling velocity in these wetlands, and their typology are comparable to their lake counterparts. The analyses also suggest that phosphorus removal efficiency in a free surface water wetland treatment system is independent of trophic status, and similar to lakes, these wetlands can be classified according to their trophic state. Oligo‐and eutrophic wetland treatment systems can be defined by low and high TP inflow concentrations, respectively. In this study, olig‐otrophic status is defined as systems receiving inflow P‐loading less than 0.10 g m‐2 year‐1, and their P inputs are mainly derived from agricultural and stormwater runoff. Eutrophic treatment systems, on the other hand, are defined as those receiving inflow P‐loading higher than 0.20 g m2 year‐1, and their inputs are mainly derived from industrial and municipal wastewater. The comparability found between lakes and free surface water wetlands treatment systems raises the question: should we consider these wetlands “shallow lakes?”  相似文献   

8.
Moore, Richard B., Craig M. Johnston, Richard A. Smith, and Bryan Milstead, 2011. Source and Delivery of Nutrients to Receiving Waters in the Northeastern and Mid‐Atlantic Regions of the United States. Journal of the American Water Resources Association (JAWRA) 47(5):965‐990. DOI: 10.1111/j.1752‐1688.2011.00582.x Abstract: This study investigates nutrient sources and transport to receiving waters, in order to provide spatially detailed information to aid water‐resources managers concerned with eutrophication and nutrient management strategies. SPAtially Referenced Regressions On Watershed attributes (SPARROW) nutrient models were developed for the Northeastern and Mid‐Atlantic (NE US) regions of the United States to represent source conditions for the year 2002. The model developed to examine the source and delivery of nitrogen to the estuaries of nine large rivers along the NE US Seaboard indicated that agricultural sources contribute the largest percentage (37%) of the total nitrogen load delivered to the estuaries. Point sources account for 28% while atmospheric deposition accounts for 20%. A second SPARROW model was used to examine the sources and delivery of phosphorus to lakes and reservoirs throughout the NE US. The greatest attenuation of phosphorus occurred in lakes that were large relative to the size of their watershed. Model results show that, within the NE US, aquatic decay of nutrients is quite limited on an annual basis and that we especially cannot rely on natural attenuation to remove nutrients within the larger rivers nor within lakes with large watersheds relative to the size of the lake.  相似文献   

9.
Abstract: The U.S. Environmental Protection Agency recommends two statistical methods to States and Tribes for developing nutrient criteria. One establishes a criterion as the 75th percentile of a reference‐population frequency distribution, the other uses the 25th percentile of a general‐population distribution; the U.S. Environmental Protection Agency suggests either method results in similar criteria. To evaluate each method, the Montana Department of Environmental Quality (MT DEQ) assembled data from STORET and other sources to create a nutrient general population. MT DEQ’s reference‐stream project provided reference population data. Data were partitioned by ecoregions, and by seasons (winter, runoff, and growing) defined for the project. For each ecoregion and season, nutrient concentrations at the 75th percentile of the reference population were matched to their corresponding concentrations in the general population. Additionally, nutrient concentrations from five regional scientific studies were matched to their corresponding reference population concentrations; each study linked nutrients to impacts on water uses. Reference‐to‐general population matches were highly variable between ecoregions, as nutrients at the 75th percentile of reference corresponded to percentiles ranging from the 4th to the 97th of the general population. In contrast, case studies‐to‐reference matches were more consistent, matching on average to the 86th percentile of reference, with a coefficient of variation of 13%.  相似文献   

10.
Abstract: In northern regions, large volumes of water are needed for activities such as winter road construction. Such withdrawals, particularly from small lakes, can reduce oxygen concentrations and water levels, potentially affecting aquatic organisms. Withdrawal limits have been developed by regulatory agencies, but are largely theoretical. Water withdrawal thresholds were tested in two small lakes by removing 10% and 20% of their respective under‐ice volumes and comparing oxygen parameters, temperature, over‐wintering habitat, and northern pike (Esox lucius) abundance to reference conditions. Because of a milder winter, oxygen parameters were elevated in reference lakes in the period following withdrawal compared to the prewithdrawal period. The 10% withdrawal resulted in a ?0.2 m shift in the oxygen concentration profile at 4 mg/l in that lake, but had no effect on total volume‐weighted oxygen, or volume of over‐wintering habitat. In contrast, the 20% withdrawal caused 0.7 m reduction in the oxygen concentration profile at 4 mg/l compared to the previous year, a 26% decline in the volume‐weighted oxygen concentration, and a 23% reduction in the volume of over‐wintering habitat compared to prewithdrawal conditions. Water temperatures were slightly (≤ 10%) colder in the upper strata in the year following the withdrawal in both withdrawal and reference lakes. Northern pike abundance was not impacted by water withdrawals in either of the lakes. The results of this study show that the effects of water withdrawal on the parameters investigated reflected the characteristics of the lakes, and would therefore be expected to vary from lake to lake. Policy development to mitigate impacts must therefore reflect the site‐specific nature of water withdrawal.  相似文献   

11.
Abstract: Arctic lakes are significant emitters of methane (CH4), a potent greenhouse gas, to the atmosphere; yet no rigorous quantification of the magnitude and variability of pan‐Arctic lake emissions exists. In this study, we demonstrate the potential for a new method using synthetic aperture radar (SAR) imagery to detect methane bubbles in lake ice to scale up whole‐lake measurements of CH4 ebullition (bubbling) to regional scales. We estimated ebullition from lakes, which is often the dominant mode of lake emissions, by mapping the distribution of bubble clusters frozen in early winter ice across surfaces of seven tundra lakes and one boreal forest lake in Alaska. Applying previously measured ebullition rates associated with four distinct classes of bubble clusters found in lake ice, we estimated whole‐lake emissions from individual lakes. The percent surface area of lake ice covered with bubbles (R2 = 0.68) and CH4 ebullition rates from lakes (R2 = 0.59) and were correlated with radar return values from RADARSAT‐1 Standard Beam mode 3 for the tundra lakes, suggesting that with appropriate scaling and consideration for variability in lake‐ice conditions, this technique has the potential to be used for estimating broader‐scale regional and pan‐Arctic lake methane emissions.  相似文献   

12.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

13.
Assessment of lake impairment status and identification of threats’ type and source is essential for protection of intact, enhancement of modified, and restoration of impaired lakes. For regions in which large numbers of lakes occur, such assessment has usually been done for only small fractions of lakes due to resource and time limitation. This study describes a process for assessing lake impairment status and identifying which human disturbances have the greatest impact on each lake for all lakes that are 2 ha or larger in the state of Michigan using readily available, georeferenced natural and human disturbance databases. In-lake indicators of impairment are available for only a small subset of lakes in Michigan. Using statistical relationships between the in-lake indicators and landscape natural and human-induced measures from the subset lakes, we assessed the likely human impairment condition of lakes for which in-lake indicator data were unavailable using landscape natural and human disturbance measures. Approximately 92% of lakes in Michigan were identified as being least to marginally impacted and about 8% were moderately to heavily impacted by landscape human disturbances. Among lakes that were heavily impacted, more inline lakes (92%) were impacted by human disturbances than disconnected (6%) or headwater lakes (2%). More small lakes were impacted than medium to large lakes. For inline lakes, 90% of the heavily impacted lakes were less than 40 ha, 10% were between 40 and 405 ha, and 1% was greater than 405 ha. For disconnected and headwater lakes, all of the heavily impacted lakes were less than 40 ha. Among the anthropogenic disturbances that contributed the most to lake disturbance index scores, nutrient yields and farm animal density affected the highest number of lakes, agricultural land use affected a moderate number of lakes, and point-source pollution and road measures affected least number of lakes. Our process for assessing lake condition represents a significant advantage over other routinely used methods. It permits the evaluation of lake condition across large regions and yields an overall disturbance index that is a physicochemical and biological indicator weighted sum of multiple disturbance factors. The robustness of our approach can be improved with increased availability of high-resolution disturbance datasets.  相似文献   

14.
Lake Okeechobee (surface area = 1830 km2, mean depth = 3.5 m), the largest lake in Florida, is eutrophic and has nitrogen and phosphorus loading rates in excess of nearly all established criteria. The lake is not homogeneous regarding trophic conditions, and spatial and temporal variations occur regarding nutrient limitation. Nonetheless, phosphorus loading rate and trophic state data fit reasonably well to various input-output models developed for temperate lakes. Modification of the models by regression analysis to fit data for Florida lakes resulted in improved predictions for most parameters. Analysis of nutrient management alternatives for the lake indicates that a 75% reduction of phosphorus loading from the largest source (the Taylor Creek-Nubbins Slough watershed) would reduce the average chlorophyll a concentration by less than 20%. Complete elimination of inputs from the largest nitrogen source (the Everglades Agricultural Area) would decrease the average nitrogen concentration in the lake by about 20%. Limitations of nutrient inputoutput models regarding analysis of trophic conditions and management alternatives for the lake are discussed.  相似文献   

15.
ABSTRACT: Continuous measures of water quality responsiveness to changes in nutrient loadings are developed for use by environmental regulators attempting to achieve the greatest degree of water quality improvement consistent with competing uses of scarce resources. Recent contributions to the literature, based upon the nutrient loading concept, provide statistical relationships applicable to broad categories of lakes. In order to meet the requirements of water quality regulators, equations based upon USEPA survey data are developed in terms of the functional forms formulated and tested in the literature. Since recent authors have observed that much existing survey data are inappropriate for the formulation and testing of nutrient loading relationships, we have utilized results from the literature that work best with the existing data base, on grounds that such data are most inexpensively available to water quality managers. The nature of existing data limitations is discussed, and approaches to the revision of current results in light of improvements in the data base are indicated.  相似文献   

16.
ABSTRACT: The applicability of the U.S Environmental Protection Agency's (USEPA) water temperature criteria in evaluating the impact of a thermal discharge from the P. H. Glatfelter Paper Company, Spring Grove, Pennsylvania, is analyzed. A review of the literature relative to 11 temperature Criteria was conducted for six fish species designated by the USEPA as “representative important species” (RIS) of the West Branch Codorus Creek, Susquehanna River drainage. The species were: Notemigonus crysolcucas (golden shiner), Notropis analostanus (satinfin shiner), Rhinichthys atratulus (blacknose dace), Catostomus comme-soni (white sucker), Lepomis gibbosus (pumpkinseed). and Micropterous salmoides (largemouth bass). It was found that by applying only USEPA suggested criteria that a complete evaluation was not satisfactory. Temperature behavior data, specifically preference and avoidance information, coupled with field sampliug was needed to properly assess the effects of the thermal effluent. The final analysis indicated that the thermal discharge of the paper company should have minimal effect on the fish community of Codorus Creek.  相似文献   

17.
Wise, Daniel R. and Henry M. Johnson, 2011. Surface‐Water Nutrient Conditions and Sources in the United States Pacific Northwest. Journal of the American Water Resources Association (JAWRA) 47(5):1110‐1135. DOI: 10.1111/j.1752‐1688.2011.00580.x Abstract: The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface‐water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency’s recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface‐water nutrient conditions and should be useful to environmental managers in future water‐quality planning efforts.  相似文献   

18.
ABSTRACT: In order to establish meaningful nutrient criteria, consideration must be given to the spatial variations in geographic phenomena that cause or reflect differences in nutrient concentrations in streams. Regional differences in stream nutrient concentrations were illustrated using stream data collected from 928 nonpoint‐source watersheds distributed throughout the country and sampled as part of the U.S. EPA National Eutrophication Survey (NES). Spatial patterns in the differences were compared and found to correspond with an a priori regional classification system based on regional patterns in landscape attributes associated with variation in nutrient concentrations. The classification consists of 14 regions composed of aggregations of the 84 U.S. EPA Level III Ecoregions. The primary distinguishing characteristics of each region and the factors associated with variability in water quality characteristics are presented. The use of the NES and many other extant monitoring data sets to develop regional reference conditions for nutrient concentrations in streams is discouraged on the basis of sample representation. The necessity that all sites used in such an effort be regionally representative and consistently screened for least possible impact is emphasized. These sampling issues are rigorously addressed by the U.S. EPA Environmental Monitoring and Assessment Program (EMAP). A case‐study, using EMAP data collected from the Central and Eastern Forested Uplands, demonstrates how regional reference conditions and draft nutrient criteria could be developed.  相似文献   

19.
Lead arsenate pesticides were widely used in apple orchards from 1925 to 1955. Soils from historic orchards in four counties in Virginia and West Virginia contained elevated concentrations of As and Pb, consistent with an arsenical pesticide source. Arsenic concentrations in approximately 50% of the orchard site soils and approximately 1% of reference site soils exceed the USEPA Preliminary Remediation Goal (PRG) screening guideline of 22 mg kg(-1) for As in residential soil, defined on the basis of combined chronic exposure risk. Approximately 5% of orchard site soils exceed the USEPA PRG for Pb of 400 mg kg(-1) in residential soil; no reference site soils sampled exceed this value. A variety of statistical methods were used to characterize the occurrence, distribution, and dispersion of arsenical pesticide residues in soils, stream sediments, and ground waters relative to landscape features and likely background conditions. Concentrations of Zn, Pb, and Cu were most strongly associated with high developed land density and population density, whereas elevated concentrations of As were weakly correlated with high orchard density, consistent with a pesticide residue source. Arsenic concentrations in ground water wells in the region are generally <0.005 mg L(-1). There was no spatial association between As concentrations in ground water and proximity to orchards. Arsenic had limited mobility into ground water from surface soils contaminated with arsenical pesticide residues at concentrations typically found in orchards.  相似文献   

20.
Haucke, Jessica and Katherine A. Clancy, 2011. Stationarity of Streamflow Records and Their Influence on Bankfull Regional Curves. Journal of the American Water Resources Association (JAWRA) 47(6):1338–1347. DOI: 10.1111/j.1752‐1688.2011.00590.x Abstract: Bankfull regional curves, which are curves that establish relationships among channel morphology, discharge, drainage area, are used extensively for stream restoration. These curves are developed upon the assumption that streamflows maintain stationarity over the entire record. We examined this assumption in the Driftless Area of southwestern Wisconsin where agricultural soil retention practices have changed, and precipitation has increased since the 1970s. We developed a bankfull regional curve for this area using field surveys of bankfull channel performed during 2008‐2009 and annual series of peak streamflows for 10 rivers with streamflow records ranging from the 1930s to 2009. We found bankfull flows to correlate to a 1.1 return period. To evaluate gage data statistics, we used the sign test to compare our channel morphology to historic 1.5 return period discharge (Q1.5) for five time periods: 1959‐1972, 1973‐1992, 1993‐2008, 1999‐2008, and the 1959‐2008 period of record. Analysis of the historic gage data indicated that there has been a more than 30% decline in Q1.5 since 1959. Our research suggests that land conservation practices may have a larger impact on gaging station stationarity than annual precipitation changes do. Additionally, historic peak flow data from gages, which have records that span land conservation changes, may need to be truncated to represent current flow regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号