首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r 2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r 2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.  相似文献   

2.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

3.
ABSTRACT: One component of the filamentous algal community of a northern fen ecosystem in central Michigan was studied under conditions of nutrient enrichment by secondarily treated sewage effluent during one growing season. The productivity of Cladophora spp. measured by continuous flow bioassay was 2.6 g dry weight m day at the site of effluent addition compared to 0.085 g m day at the control site. Under conditions of nutrient enrichment, uptake by bioassay Cladophora spp. averaged 12 mg m?2day?1for phosphorus and 55 mg m?2day?1for nitrogen, compared to 0.01 mg m?2 day?1and 0.16 mg m?2day?1for phosphorus and nitrogen, respectively, in the control area. At the end of the growing season approximately 4.3 g N m?2 and 0.96 g P m?2were immobilized in Cladophora algal biomass. Algal growth temporarily immobilized 3.0 percent of the nitrogen and 1.0 percent of the phosphorus added as sewage effluent. Gross productivity of surface water in the fen averaged 1.5 g O2m?2day?1at the nutrient enriched site, compared to 0.5 g O2 m?2day?1at the control area. Gross productivity, community respiration and reaeration constant values in the fen were similar to data collected by other researchers in shallow water aquatic systems, but only at the fertilized sites.  相似文献   

4.
Nutrient concentration targets are an important component of managing river eutrophication. Relationships between periphyton biomass and site characteristics for 78 gravel‐bed rivers in New Zealand were represented by regression models. The regression models had large uncertainties but identified broad‐scale drivers of periphyton biomass. The models were used to derive concentration targets for the nutrients, total nitrogen (TN) and dissolved reactive phosphorous (DRP), for 21 river classes to achieve periphyton biomass thresholds of 50, 120, and 200 mg chlorophyll a m?2. The targets incorporated a temporal exceedance criterion requiring the specified biomass threshold not be exceeded by more than 8% of samples. The targets also incorporated a spatial exceedance criterion requiring the biomass thresholds will not be exceeded at more than a fixed proportion (10%, 20%, or 50%) of locations. The spatial exceedance criterion implies, rather than requiring specific conditions at individual sites, the objective is to restrict biomass to acceptable levels at a majority of locations within a domain of interest. A Monte Carlo analysis was used to derive the uncertainty of the derived nutrient concentration targets for TN and DRP. The uncertainties reduce with increasing size of the spatial domain. Tests indicated the nutrient concentration targets were reasonably consistent with independent periphyton biomass data despite differences in the protocols used to measure biomass at the training and test sites.  相似文献   

5.
A mechanistic understanding of the effects of nutrient enrichment in lotic systems has been advanced over the last two decades such that identification of management thresholds for the prevention of eutrophication is now possible. This study describes relationships among primary nutrients (phosphorus and nitrogen), benthic chlorophyll a concentrations, daily dissolved oxygen (DO) concentrations, and the condition of macroinvertebrate and fish communities in small rivers and streams in Ohio, USA. Clear associations between nutrients, secondary response indicators (i.e., benthic chlorophyll and DO), and biological condition were found, and change points between the various indicators were identified for use in water quality criteria for nutrients in small rivers and streams (<1300 km2). A change point in benthic chlorophyll a density was detected at an inorganic nitrogen concentration of 0.435 mg/l (±0.599 SD), and a total phosphorus (TP) concentration of 0.038 mg/l (±0.085 SD). Daily variation in DO concentration was significantly related to benthic chlorophyll concentration and canopy cover, and a change point in 24-h DO concentration range was detected at a benthic chlorophyll level of 182 mg/m2. The condition of macroinvertebrate communities was related to benthic chlorophyll concentration and both minimum and 24-h range of DO concentration. The condition of fish communities was best explained by habitat quality. The thresholds found in relationships between the stressor and the response variables, when interpreted in light of the uncertainty surrounding individual change points, may now serve as a framework for nutrient criteria in water quality standards.  相似文献   

6.
Nitrogen (N) and phosphorus (P) are significant pollutants that can stimulate nuisance blooms of algae. Water quality models (e.g., Water Quality Simulation Program, CE‐QUAL‐R1, CE‐QUAL‐ICM, QUAL2k) are valuable and widely used management tools for algal accrual due to excess nutrients in the presence of other limiting factors. These models utilize the Monod and Droop equations to associate algal growth rate with dissolved nutrient concentration and intracellular nutrient content. Having accurate parameter values is essential to model performance; however, published values for model parameterization are limited, particularly for benthic (periphyton) algae. We conducted a 10‐day mesocosm experiment and measured diatom‐dominated periphyton biomass accrual through time as chlorophyll a (chl a) and ash‐free dry mass (AFDM) in response to additions of N (range 5–11,995 µg nitrate as nitrogen [NO3‐N]/L) and P (range 0.89–59.51 µg soluble reactive phosphorus/L). Resulting half‐saturation coefficients and growth rates are similar to other published values, but minimum nutrient quotas are higher than those previously reported. Saturation concentration for N ranged from 150 to 2,450 µg NO3‐N/L based on chl a and from 8.5 to 60 µg NO3‐N/L when based on AFDM. Similarly, the saturation concentration for P ranged from 12 to 29 µg‐P/L based on chl a, and from 2.5 to 6.1 µg‐P/L based on AFDM. These saturation concentrations provide an upper limit for streams where diatom growth can be expected to respond to nutrient levels and a benchmark for reducing nutrient concentrations to a point where benthic algal growth will be limited.  相似文献   

7.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

8.
Abstract: A public opinion survey was carried out in Montana to ascertain if the public identifies a level of benthic (bottom‐attached) river and stream algae that is undesirable for recreation. The survey had two parts; an On‐River survey and a By‐Mail survey. The On‐River survey was conducted via 44 trips randomly scheduled throughout the state during which recreators were interviewed in‐person at the stream. Selection of stream segments and survey dates/times was based on known, statewide recreational use patterns. By‐Mail survey forms were sent to 2,000 individuals randomly selected from Montana’s Centralized Voter File (CVF) available from the Montana Secretary of State. The CVF was current through 2004 and represented over 85% of the state’s eligible voting population. In both surveys, eight randomly ordered photographs depicting varying levels of stream benthic algae were presented, and participants were asked if the algae level shown was desirable or undesirable for recreation. Survey form design, selection of photographs, and pretesting followed acceptable protocols that limited unintentional bias through survey execution. There were 433 returned forms (389 complete) for the By‐Mail survey, while the On‐River survey documented 563 interviews. In both surveys, as benthic algal chlorophyll a (Chl a) levels increased, desirability for recreation decreased. (Other measures of benthic algae biomass are presented as well.) For the public majority, mean benthic Chl a levels ≥200 mg/m2 were determined to be undesirable for recreation, whereas mean levels ≤150 mg Chl a/m2 were found to be desirable. Error rates were within the survey’s statistical design criteria (≤5%). The largest potential error source was nonresponse in the By‐Mail survey; however, the population represented by nonrespondents would have to exhibit profoundly different perceptions of river and stream algae to meaningfully alter the results. Results support earlier work in the literature suggesting 150 mg Chl a/m2 represents a benthic algae nuisance threshold.  相似文献   

9.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

10.
In lakes which experience water quality problems due to the nuisance growth of blue-green algae, summer concentrations of chlorophyll a may not always be a meaningful measure of water quality for making management decisions. Models for the prediction of summer mean blue-green algal biomass were thus developed from data collected from five systems located in North America and Sweden. It is suggested that the model of choice is log BG =?0.142 + 0.596 log TP – 0.963 log Z, where BG is the biomass of blue-green algae (g m?3), TP is the concentration of total phosphorus (mg m?3), and Z is the mean depth of the lake (m). When coupled to current loading models, this model can potentially be used to assess the impacts of phosphorus loading reductions on threshold odor in water supplies.  相似文献   

11.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

12.
ABSTRACT: The decline of water quality in United States’ lotic ecosystems (streams and rivers) has been linked to nonpoint source nutrient loading (U.S. EPA, 1990). Determining limiting nutrients in streams is difficult due to the variable nature of lotic ecosystems. We developed a quantitative passive diffusion periphyton nutrient enrichment system, called the Matlock Periphytometer, to measure the response of attached algae (periphyton) to nutrient enrichment. The system is simple to build and provides quantitative nutrient enrichment of a surface for periphytic growth. The periphyton grow on a glass fiber filter, which allows complete recovery of periphyton for chlorophyll a analysis. A 14-kilodalton dialysis membrane was used as a biofilter to prevent bacterial and algal contamination of the nutrient solution. We determined the rates of diffusion of nitrogen and phosphorus ions across the Matlock Periphytometer's dialysis membrane and glass fiber filter over a 21-day period (42 and 22 μg/cm2/hr, respectively). We used the Matlock Periphytometer to determine the limiting nutrient in a woodland stream. Six replicates each of a control, nitrogen, and phosphorus treatment were placed in the stream for 14 days. The results indicated that phosphorus was the limiting nutrient in the stream for the period and location sampled.  相似文献   

13.
We measured biomass and metabolism of epilithic communities on five dates in different seasons at four sites in a watershed that has received extensive restoration for acid mine drainage (AMD) through the construction of passive treatment systems. Chlorophyll a biomass and productivity directly corresponded to AMD stress from coal mining. The site downstream of extensive passive treatment had significantly greater biomass and gross primary productivity rates than the site receiving only untreated AMD, but values were below those for two reference sites, indicating incomplete recovery. The degree of difference in these metrics among sites varied seasonally, primarily related to differences in canopy cover changes, but the ranking of sites in terms of stress generally was consistent. Reference sites had a significantly greater chlorophyll a/pheophytin ratio than untreated and treated sites, also indicating AMD stressed the communities. Community respiration was less affected by AMD stress than productivity or chlorophyll a. Productivity measures are not widely used to assess AMD impacts, and have been shown to both increase and decrease with AMD stress. The elimination of herbivores in AMD-impacted streams can increase productivity in the benthic algal community. Our study found productivity decreased with increasing AMD stress. Although sites with AMD stress had reduced herbivore populations, light, nutrients and metal precipitates appear to have limited growth of AMD-tolerant algal taxa. Therefore, it appears changes in food web structure due to AMD stress had less of an effect on epilithic productivity than environmental conditions within the stream.  相似文献   

14.
Research was conducted at 28‐30 sites within eight study areas across the United States along a gradient of nutrient enrichment/agricultural land use between 2003 and 2007. Objectives were to test the application of an agricultural intensity index (AG‐Index) and compare among various invertebrate and algal metrics to determine indicators of nutrient enrichment nationally and within three regions. The agricultural index was based on total nitrogen and phosphorus input to the watershed, percent watershed agriculture, and percent riparian agriculture. Among data sources, agriculture within riparian zone showed significant differences among values generated from remote sensing or from higher resolution orthophotography; median values dropped significantly when estimated by orthophotography. Percent agriculture in the watershed consistently had lower correlations to invertebrate and algal metrics than the developed AG‐Index across all regions. Percent agriculture showed fewer pairwise comparisons that were significant than the same comparisons using the AG‐Index. Highest correlations to the AG‐Index regionally were ?0.75 for Ephemeroptera, Plecoptera, and Trichoptera richness (EPTR) and ?0.70 for algae Observed/Expected (O/E), nationally the highest was ?0.43 for EPTR vs. total nitrogen and ?0.62 for algae O/E vs. AG‐Index. Results suggest that analysis of metrics at national scale can often detect large differences in disturbance, but more detail and specificity is obtained by analyzing data at regional scales.  相似文献   

15.
Maret, Terry R., Christopher P. Konrad, and Andrew W. Tranmer, 2010. Influence of Environmental Factors on Biotic Responses to Nutrient Enrichment in Agricultural Streams. Journal of the American Water Resources Association (JAWRA) 46(3):498-513. DOI: 10.1111/j.1752-1688.2010.00430.x Abstract: The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (<0.004-0.361 mg/l), but biotic responses including periphytic and sestonic chlorophyll a (RCHL and SCHL, respectively), and percent of stream bed with aquatic macrophyte (AQM) growth were not strongly related to concentrations of TN or TP. Pearson’s coefficient of determination (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p < 0.001). A TN threshold of 0.48 mg/l was identified where eutrophic index scores became less responsive to increasing TN concentrations, for all sites. Multiple plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes.  相似文献   

16.
Abstract: Nutrient dose‐response bioassays were conducted using water from three sites along the North Bosque River. These bioassays provided support data for refinement of the Soil and Water Assessment Tool (SWAT) model used in the development of two phosphorus TMDLs for the North Bosque River. Test organisms were native phytoplanktonic algae and stock cultured Pseudokirchneriella subcapitata (Korshikov) Hindak. Growth was measured daily by in vivo fluorescence. Algal growth parameters for maximum growth (μmax) and half‐saturation constants for nitrogen (KN) or phosphorus (KP) were determined by fitting maximum growth rates associated with each dose level to a Monod growth rate function. Growth parameters of native algae were compared between locations and to growth parameters of P. subcapitata and literature values. No significant differences in half‐saturation constants were indicated within nutrient treatment for site or algal type. Geometric mean KN was 32 μg/l and for KP 7 μg/l. A significant difference was detected in maximum growth rates between algae types but not between sites or nutrient treatments. Mean μmax was 1.5/day for native algae and 1.2/day for stock algae. These results indicate that watershed‐specific maximum growth rates may need to be considered when modeling algal growth dynamics with regard to nutrients.  相似文献   

17.
ABSTRACT: A method is demonstrated for the development of nutrient concentration criteria and large scale assessment of trophic state in environmentally heterogeneous landscapes. The method uses the River Environment Classification (REC) as a spatial framework to partition rivers according to differences in processes that control the accrual and loss of algae biomass. The method is then applied to gravel bed rivers with natural flow regimes that drain hilly watersheds in New Zealand's South Island. An existing model is used to characterize trophic state (in terms of chlorophyll a as a measure of maximum biomass) using nutrient concentration, which controls the rate of biomass accrual, and flood frequency, which controls biomass loss. Variation in flood frequency was partitioned into three classes, and flow data measured at 68 sites was used to show that the classes differ with respect to flood frequency. Variation in nutrient concentration was partitioned at smaller spatial scales by subdivision of higher level classes into seven classes. The median of flood frequency in each of the three higher level classes was used as a control variable in the model to provide spatially explicit nutrient concentration criteria by setting maximum chlorophyll a to reflect a desired trophic state. The median of mean monthly soluble reactive phosphorus and soluble inorganic nitrogen measured at 68 water quality monitoring sites were then used to characterize the trophic state of each of the seven lower level classes. The method models biomass and therefore allows variation in this response variable to provide options for trophic state and the associated nutrient concentrations to achieve these. Thus it is less deterministic than using reference site water quality. The choice from among these options is a sociopolitical decision, which reflects the management objectives rather than purely technical considerations.  相似文献   

18.
Abstract: A systematic method for identification and estimation of regional scale stressor‐response models in aquatic ecosystems will be useful in monitoring and assessment of aquatic resources, determination of regional nutrient criteria and for increased understanding of the differences between regions. The model response variable is chlorophyll a, a measure of algal density, while the stressors include nutrient concentrations from the USEPA Nutrient Criteria Database (NCD) for lakes/ponds and reservoirs of the continental United States. The NCD has observations for both stressors and biological responses determined using methods that are not consistently available at the continental scale. To link multiple environmental stressors to biological responses and quantify uncertainty in model predictions, we take a multilevel modeling approach to the estimation of a linear model for prediction of log Chlorophyll a using predictors log TP and log TN. The multilevel modeling approach allows us to adjust the impact of covariates at all levels (observation, higher level groups) for the simultaneous operation of contextual and individual variability in the outcome. Here, we wish to allow separate regression coefficients for inference regarding similarities and differences between each of 14 ecoregions, and between the two water‐body types, lakes/ponds and reservoirs. We are also interested in the nuisance effects of the categorical variables indicating the type of nitrogen measurements (three levels) and the type of chlorophyll a measurements (four levels) used. Model‐based determination of nutrient criteria points to an apparent incompatibility of criteria developed for nutrient stressors and eutrophication responses using current Environmental Protection Agency’s guidance.  相似文献   

19.
The present study was carried out to determine the impacts of SO2, NO x , SPM and RSPM, the most common air pollutants, generated mainly due to industries and vehicles, on some biochemical parameters and yield in wheat and mustard plants during 2006. The concentration of SO2, NO x , SPM and RSPM was determined at the polluted sites across the seasons, which ranged between 14.29–18.10, 20.81–22.43, 483.65–500.85 and 160.67–171.18 μg m−3, respectively. The wheat and mustard plants grown at polluted sites showed significant reduction in chlorophyll ‘a’, chlorophyll ‘b’, total chlorophyll, carotenoid, ascorbic acid, pH, relative water content and yield. The data were further analyzed using a two way ANOVA. It is concluded that the ambient air pollutants have a potential adverse impact on biochemical parameters, which further leads to a reduction in the yield of wheat and mustard crops.  相似文献   

20.
We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water‐level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, = 0.020) between 1977‐1999 and 2000‐2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open‐water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, = 0.006) between 1977‐1999 and 2000‐2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (= 0.006) and in Kabetogama Lake from 57 to 50 (= 0.006) between 1977‐1999 and 2000‐2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water‐level management plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号