首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
ABSTRACT: A two-parameter farm pond storage index, FPSI, was Used to adjust computed surface. runoff using the partial area runoff contribution resulting from runoff captured by farm ponds. The validity of the index method was tested by fitting a continuous accounting version of the Soil Conservation Service curve number procedure to surface runoff data from each of three watersheds, first with and then without the FPSI routine. Evapotranspiration computed with the Jensen-Haise method and rainfall were input to the model. A linear relationship was assumed between the storage index and the portion of the controlled drainage area that was contributing to runoff. Adjusting the computed runoff with the FPSI reduced the coefficient of variation of monthly measured versus computed surface runoff for each of the three watersheds. The correlation coefficients for the same comparisons were increased. The annual predicted surface runoff Was improved for 12 of the 17 station years of data tested. The farm pond storage index could be used with any surface runoff model to improve the prediction of runoff from watersheds with drainage areas greater than 1 square mile and with about 20 percent or more of the drainage area controlled by farm ponds.  相似文献   

2.
ABSTRACT: The problems of increased surface runoff which follow in step with urbanization can be conceptualized in terms of environmental economics. The private transformation of land from a permeable to an impermeable surface imposes the externality of increased surface runoff upon society as a whole and especially on those downstream. The city of Boulder, Colorado, has enacted an ordinance which attempts to internalize some of these external costs and at the same time decrease surface runoff from the urban environment.  相似文献   

3.
Manure application can lead to excessive soil test P levels in surface soil, which can contribute to increased P concentration in runoff. However, manure application often results in reduced runoff and sediment loss. Research was conducted to determine the residual effects of previously applied compost, plowing of soil with excessive soil test P, and application of additional compost after plowing on volume of runoff and loss of sediment and P in runoff. The research was conducted in 2004 and 2005 under natural rainfall events with plots of 11-m length where low-P and high-P compost had been applied during April 1998 to January 2001. During this initial application period, Bray-P1 in the surface 5-cm of depth was increased from 14 to 553 mg kg(-1) for the high-P compost. Inversion plowing in the spring of 2004 greatly decreased P levels in the surface soil and over the following year reduced runoff by 35% and total P losses by 51% compared with the unplowed compost treatments. Sediment loss was increased with plowing compared with the unplowed compost applied treatments but less than with the no-compost treatment. The application of additional compost after plowing increased surface soil P and dissolved reactive P (DRP) in runoff but did not increase particulate P in runoff. Unplowed compost-amended soil continued to reduce sediment loss but exhibited increased DRP loss even 5 yr after the last application. Plowing to invert excessively high-P surface soil was effective in reducing runoff and DRP loss.  相似文献   

4.
While numerous studies have evaluated the efficacy of outdoor rainfall simulations to predict P concentrations in surface runoff, few studies have linked indoor rainfall simulations to P concentrations in surface runoff from agricultural fields. The objective of this study was to evaluate the capacity of indoor rainfall simulation to predict total dissolved P concentrations [TP(<0.45)] in field runoff for four dominant agricultural soils in South Dakota. Surface runoff from 10 residue-free field plots (2 m wide by 2 m long, 2-3% slope) and packed soil boxes (1 m long by 20 cm wide by 7.5 cm high, 2-3% slope) was compared. Surface runoff was generated via rainfall simulation at an intensity of 65 mm h(-1) and was collected for 30 min. Packed boxes produced approximately 24% more runoff (range = 2.8-3.4 cm) than field plots (range = 2.3-2.7 cm) among all soils. No statistical differences in either TP(<0.45) concentration or TP(<0.45) loss was observed in runoff from packed boxes and field plots among soil series (0.17 < P < 0.83). Three of four soils showed significantly more total P lost from packed boxes than field plots. The TP(<0.45) concentration in surface runoff from field plots can be predicted from TP(<0.45) concentration in surface runoff from the packed boxes (0.68 < r(2) < 0.94). A single relationship was derived to predict field TP(<0.45) concentration in surface runoff using surface runoff TP(<0.45) concentration from packed boxes. Evidence is provided that indoor runoff can adequately predict TP(<0.45) concentration in field surface runoff for select soils.  相似文献   

5.
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.  相似文献   

6.
Rainfall simulation experiments were conducted on annual grassland and coastal sage scrub hillslopes to determine the quantities of C and N removed by surface runoff in sediment and solution. Undisturbed coastal sage scrub soils have very high infiltration capacities (> 140 mm h(-1)), preventing the generation of surface runoff. Trampling disturbance to the sage scrub plots dramatically reduced infiltration capacities, increasing the potential for surface runoff and associated nutrient loss. Infiltration capacities in the grassland plots (30-50 mm h(-1)) were lower than in the sage scrub plots. Loss rates of dissolved C and N in surface runoff from grasslands were 0.5 and 0.025 mg m(-2) s(-1) respectively, with organic N accounting for more than 50% of the dissolved N. Total dissolved losses with simulated rainfall were higher than losses in simulations with just surface runoff, demonstrating the importance of raindrop impact in transferring solutes into the flow. Experimental data were incorporated into a numerical model of runoff and sediment transport to estimate hillslope-scale sediment-bound nutrient losses from grasslands. According to the model results, sediment-bound nutrient losses are sensitive to the density of vegetation cover and rainfall intensity. The model estimates annual losses in surface runoff of 0.2 and 0.02 g m(-2) for sediment-hound C and N, respectively. The results of this study suggest that conversion of coastal sage scrub to annual grasslands increases hillslope nutrient losses and may affect stream water quality in the region.  相似文献   

7.
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.  相似文献   

8.
This study tests the applicability of the curve number (CN) method within the Soil and Water Assessment Tool (SWAT) to estimate surface runoff at the watershed scale in tropical regions. To do this, surface runoff simulated using the CN method was compared with observed runoff in numerous rainfall‐runoff events in three small tropical watersheds located in the Upper Blue Nile basin, Ethiopia. The CN method generally performed well in simulating surface runoff in the studied watersheds (Nash‐Sutcliff efficiency [NSE] > 0.7; percent bias [PBIAS] < 32%). Moreover, there was no difference in the performance of the CN method in simulating surface runoff under low and high antecedent rainfall (PBIAS for both antecedent conditions: ~30%; modified NSE: ~0.4). It was also found that the method accurately estimated surface runoff at high rainfall intensity (e.g., PBIAS < 15%); however, at low rainfall intensity, the CN method repeatedly underestimated surface runoff (e.g., PBIAS > 60%). This was possibly due to low infiltrability and valley bottom saturated areas typical of many tropical soils, indicating that there is scope for further improvements in the parameterization/representation of tropical soils in the CN method for runoff estimation, to capture low rainfall‐intensity events. In this study the retention parameter was linked to the soil moisture content, which seems to be an appropriate approach to account for antecedent wetness conditions in the tropics.  相似文献   

9.
In nondegraded watersheds of humid climates, subsurface flow patterns determine where the soil saturates and where surface runoff is occurring. Most models necessarily use infiltration‐excess (i.e., Hortonian) runoff for predicting runoff and associated constituents because subsurface flow algorithms are not included in the model. In this article, we modify the Water Erosion Prediction Project (WEPP) model to simulate subsurface flow correctly and to predict the spatial and temporal location of saturation, the associated lateral flow and surface runoff, and the location where the water can re‐infiltrate. The modified model, called WEPP‐UI, correctly simulated the hillslope drainage data from the Coweeta Hydrologic Laboratory hillslope plot. We applied WEPP‐UI to convex, concave, and S‐shaped hillslope profiles, and found that multiple overland flow elements are needed to simulate distributed lateral flow and runoff well. Concave slopes had the greatest runoff, while convex slopes had the least. Our findings concur with observations in watersheds with saturation‐excess overland flow that most surface runoff is generated on lower concave slopes, whereas on convex slopes runoff infiltrates before reaching the stream. Since the WEPP model is capable of simulating both saturation‐excess and infiltration‐excess runoff, we expect that this model will be a powerful tool in the future for managing water quality.  相似文献   

10.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

11.
To preserve the quality of surface water, official French regulations require farmers to keep a minimum acreage of grassland, especially bordering rivers. These agro-environmental measures do not account for the circulation of water within the catchment. This paper examines whether it is possible to design with the farmers agri-environmental measures at field and catchment scale to prevent soil erosion and surface water pollution. To support this participatory approach, the hydrology and erosion model STREAM was used for assessing the impact of a spring stormy event on surface runoff and sediment yield with various management scenarios. The study was carried out in collaboration with an agricultural committee in an area of south-western France where erosive runoff has a major impact on the quality of surface water. Two sites (A and B) were chosen with farmers to discuss ways of reducing total surface runoff and sediment yield at each site. The STREAM model was used to assess surface runoff and sediment yield under current cropping pattern at each site and to evaluate management scenarios including grass strips implementation or changes in cropping patterns within the catchment. The results of STREAM simulations were analysed jointly by farmers and researchers. Moreover, the farmers discussed each scenario in terms of its technical and economical feasibility. STREAM simulations showed that a 40 mm spring rainfall with current cropping patterns led to 3116 m3 total water runoff and 335 metric tons of sediment yield at site A, and 3249 m3 and 241 metric tons at site B. Grass strips implementation could reduce runoff for about 40% and sediment yield for about 50% at site A. At site B, grass strips could reduce runoff and sediment yield for more than 50%, but changes in cropping pattern could reduce it almost totally. The simulations led to three main results: (i) grass strips along rivers and ditches prevented soil sediments from entering the surface water but did not reduce soil losses, (ii) crop redistribution within the catchment was as efficient as planting grass strips, and (iii) efficient management of erosive runoff required coordination between all the farmers using the same watershed. This study shown that STREAM model was a useful support for farmers' discussions about how to manage runoff and sediment yield in their fields.  相似文献   

12.
Phosphorus (P) in irrigation runoff may enrich offsite water bodies and streams and be influenced by irrigation water quality and antecedent soil surface conditions. Runoff, soil loss, and P fractions in runoff using reverse osmosis (RO) water or mixed RO and well water (RO/ Tap) were studied in a laboratory sprinkler study to evaluate water source effects on P transport. A top- or subsoil Portneuf silt loam (coarse-silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid), either amended or not amended with manure and/or with cheese whey, with Olsen P from 20 to 141 mg kg(-1) and lime from 108 to 243 g kg(-1), was placed in 1.5 x 1.2 x 0.2-m-deep containers with 2.4% slope and irrigated three times from a 3-m height for 15 min, applying 20 mm of water. The first irrigation was on a dry loose surface, the second on a wet surface, and the third on a dry crusted surface. Surface (ca. 2 cm) soil samples, prior to the first irrigation, were analyzed for Olsen P, water-soluble P (Pws), and iron-oxide impregnated paper-extractable P (FeO-P) analyses. Following each irrigation we determined runoff, sediment, dissolved reactive phosphorus (DRP) in a 0.45-microm filtered sample, and FeO-P and total P in unfiltered samples. Soil surface conditions had no effect on P runoff relationships. Water source had no significant effect on the relationship between DRP or FeO-P runoff and soil test P, except for DRP in RO runoff versus water-soluble soil P (r2 = 0.90). Total P in RO runoff versus soil P were not related; but weakly correlated for RO/Tap (r2 < 0.50). Water source and soil surface conditions had little or no effect on P runoff from this calcareous soil.  相似文献   

13.
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed.  相似文献   

14.
Broiler litter, a mixture of poultry excreta and bedding material, is commonly used to fertilize grasslands in the southeastern USA. Previous work has shown that under certain situations, application of broiler (Gallus gallus domesticus) litter to grasslands may lead to elevated levels of phosphorus (P) in surface runoff. The EPIC simulation model may be a useful tool to identify those situations. This work was conducted to evaluate EPIC's ability to simulate event and annual runoff volume and losses of dissolved reactive phosphorus (DRP) from tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] paddocks fertilized with broiler litter. The EPIC simulations of event runoff volume showed a trend toward underestimation, particularly for runoff events >30 mm. On an annual basis, EPIC also tended to underestimate runoff, especially at runoff volumes > 100 mm. Both event and annual runoff estimations were strongly associated with observed values, indicating that model calibration could improve the simulation of surface runoff volume. The relationship between simulated and observed values of DRP loss was relatively poor on an event basis (r=0.65), but was stronger (r=0.75) on an annual basis. In general, EPIC tended to underestimate annual DRP losses. This underestimation was apparently caused by the lack of an explicit mechanism to model broiler litter on the soil surface. These results suggested that additional work on the EPIC P submodel would be warranted to improve its simulation of surface application of broiler litter to grasslands.  相似文献   

15.
The South Saskatchewan River Basin (SSRB) of Alberta, Canada, is semiarid and under severe water stress due to increasing human demands. We present the first examination of projected changes in SSRB runoff from a large set of North American Regional Climate Change Assessment Program regional climate models (RCMs) plus one Coordinated Regional Climate Downscaling Experiment RCM. We used six different runoff estimation methods: total surface and subsurface runoff (total runoff), surface runoff, and four estimations based on Budyko functions. Most RCM estimations showed substantial biases and distribution differences when compared to observed data; thus bias correction was necessary. Total runoff was the best of the six variables in modeling observed runoff for each of the four SSRB subbasins. Projected total runoff for 2041–2070 shows a geographic gradient in the SSRB, with possible drying in the southern Oldman River subbasin and possible increased runoff in the northernmost Red Deer River subbasin. A shift to an earlier spring peak in runoff and drier late summer, with a need for increased irrigation, should be expected. In a first examination of the important question of projected changes in interannual variability, we show increasing magnitude. This result further adds to adaptation challenges over the course of this century in this basin, which is already largely closed to further allocation.  相似文献   

16.
ABSTRACT: The average microwave temperature of the watershed surface as detected by an airborne Passive Microwave Imaging Scanner (PMIS) was compared with the measured Soil Conservation Service (SCS) watershed storm runoff coefficient (CN). Previous laboratory work suggested that microwave response to the watershed surface is influenced by some of the same surface characteristics that affect runoff, i.e., soil moisture, surface roughness, vegetative cover, and soil texture. In order to field test and develop relations between runoff potentfal and microwave response, several highly instrumented watersheds of approximately 1.5 to 17 km2 were scanned under wet- and dry-soil conditions in April and June 1973. The polarized (horizontal and vertical) scans at 2.8 cm wavelength provided the data base from which other values were calculated. The best relationship between runoff coefficients (CN) and PMIS temperatures was observed when horizontally polarized temperatures from the near-dormant, early-growing season flight were used. Lower SCS runoff coefficients seem to be correlated with the cross-polarized response under dry watershed conditions late in the growing season and the difference in horizontal polarized response between wet conditions early in the growing season and dry conditions late in the growing season. To apply the results, the relationships need to be verified further.  相似文献   

17.
ABSTRACT: The effects of an artificial lake system upon the runoff hydrology of a small watershed have been determined by comparing the quantity and quality of runoff with that of an adjacent and similar watershed containing no lakes. Lake storage reduced peak discharge and slowed flood recession rate downstream. Water stored within the lakes is generally of different quality than downstream surface runoff. Salt stored in the lakes from winter deicing is released during periods of surface runoff throughout the rest of the year. During summer or fall runoff events, lake outflow dominates the salt load of the outlet stream, generating double-peaked load hydrographs in which the second, or lake-induced, crest is many times larger than the peak which corresponds to maximum flow. On the other hand, the lakes cause a reduction of salt loads and concentration in winter runoff. The concentration and loads of ions which are not related to road salt are generally less affected by the lakes, although they are increased substantially in the fall.  相似文献   

18.
The typical method of cool-season grass-seed production in Mediterranean climates briefly exposes surface waters to potentially high concentrations of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] during the initial season of growth. To better understand the process, and the degree, of diuron transport from agricultural fields, two grass-seed fields in the Willamette Valley of Oregon were monitored for diuron loss in surface runoff and tile drainage during the first wet season after planting. Initial diuron concentrations in surface runoff were high (>1000 microg L(-1) in one field and >100 microg L(-1) in the other), though they decreased by two orders of magnitude by the end of the season. Concentrations in the tile drains were as much as 1000 times lower than in the surface runoff during the first few weeks of runoff events, and they remained lower than surface water concentrations throughout the season. Total losses in surface runoff were between 1.3 and 3% of the amount applied-much higher than losses via the tile drains. It is also shown by means of a simple first-order decay model that, when little information is available, it may be best to describe diuron depletion in runoff water as a function of cumulative rainfall during the wet season.  相似文献   

19.
Cheng, Shin-jen, 2010. Inferring Hydrograph Components From Rainfall and Streamflow Records Using a Kriging Method-Based Linear Cascade Reservoir Model. Journal of the American Water Resources Association (JAWRA) 46(6):1171–1191. DOI: 10.1111/j.1752-1688.2010.00484.x Abstract: This study investigates the characteristics of hydrograph components in a Taiwan watershed to determine their shapes based on observations. Hydrographs were modeled by a conceptual model of three linear cascade reservoirs. Mean rainfall was calculated using the block Kriging method. The optimal parameters for 42 events from 1966-2008 were calibrated using an optimal algorithm. Rationality of generated runoffs was well compared with a trusty model. Model efficacy was verified using seven averaged parameters with 25 other events. Hydrograph components were characterized based on 42 calibration results. The following conclusions were obtained: (1) except for multipeak storms, a correlation between base time of the surface runoff and soil antecedent moisture is a decreasing power relationship; (2) a correlation between time lag of the surface flow and soil antecedent moisture for single-peak storms is an increasing power relationship; (3) for single-peak events, times to peak of hydrograph components are an increasing power correlation corresponding to the peak time of rainfall; (4) the peak flows of hydrograph components are linearly proportional to that of total runoff, and the peak ratio for the surface runoff to total runoff is approximately 78 and 13% for subsurface runoff to total runoff; and (5) the relationships of total discharges have direct ratios between hydrograph components and observations of total runoffs, and a surface runoff is 60 and 32% for a subsurface runoff.  相似文献   

20.
Vadas, Peter A., William E. Jokela, Dory H. Franklin, and Dinku M. Endale, 2011. The Effect of Rain and Runoff When Assessing Timing of Manure Application and Dissolved Phosphorus Loss in Runoff. Journal of the American Water Resources Association (JAWRA) 47(4):877‐886. DOI: 10.1111/j.1752‐1688.2011.00561.x Abstract: A significant pathway of nonpoint source, agricultural phosphorus (P) transport is surface runoff, to which surface‐applied manure can contribute. Increasing the time between manure application and the first rain‐runoff event is proposed as a practice to reduce runoff P loss. Few studies have investigated this aspect of manure P loss in runoff, with mixed results. Studies observing a decrease in runoff P as the time between application and the first rain‐runoff attribute the decrease to adsorption of manure P by soil and manure drying effects, but do not consider the effect of storm hydrology on runoff P. We ran the manure P runoff model SurPhos with data from nine published studies that investigated the effect of time between application and the first rain event on runoff P. SurPhos successfully simulated the experimental conditions in the studies and predicted runoff P loss. Simulation results suggest soil adsorption of manure P is not the dominant mechanism that will significantly decrease manure P availability to runoff. Rather, regardless of when the first rain‐runoff event occurs, storm hydrology will significantly affect manure P loss in runoff. Although model scenarios indicate that increasing the time between manure application and the first rain‐runoff event will typically decrease P loss in runoff, runoff P could be equal to or greater 30 days after application than the day after application if a more intense rain and runoff event occurs at the latter date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号