首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports on the adsorption efficiency of two classes of adsorbents: nano-adsorbents including carbon nanotubes (CNTs) and carbon nanofibers (CNFs); and micro-adsorbents including activated carbon (AC) and fly ash (FA). The materials were characterized by thermogravimetric analysis, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area, zeta potential, field emission scanning electron microscopy, and UV spectroscopy. The adsorption experimental conditions such as pH of the solution, agitation speed, contact time, initial concentration of phenol, and adsorbent dosage were optimized for their influence on the phenol. The removal efficiency of the studied adsorbents has the following order: AC > CNTs > FA > CNFs. The capacity obtained from Langmuir isotherm was found to be 1.348, 1.098, 1.007, and 0.842 mg/g of AC, CNTs, FA, and CNFs, respectively, at 2 hours of contact time, pH 7, an adsorbent dosage of 50 mg, and a speed of 150 rpm. The higher adsorption of phenol on AC can be attributed to its high surface area and its dispersion in water. The optimum values of these variables for maximum removal of phenol were also determined. The experimental data were fitted well to Langmuir than Freundlich isotherm models.  相似文献   

2.
Hydroxyl-enriched materials are promising boron adsorbents. However, the use of these materials is hampered by issues of separation, recovery, and selectivity, notably due to the presence of interfering ions. Therefore, we synthesized here a cheap magnetic nanopowder, which was further functionalized with polyvinyl alcohol and glycidol to produce boron-selective adsorbents. We studied their selectivity and removal efficiency using batch and fixed-bed systems. Sorption was studied at both concentrated and trace amounts of boron. Results show that nanopowders have 5.3–6.5 nm pore sizes and 145–203 m2/g surface areas, using Brunauer–Emmett–Teller analysis. Polyvinyl alcohol-functionalized particles removed 93 % of boron at 5 mg/L at pH 7 in 30 min, whereas only 68 % of boron was removed by glycidol-functionalized particles. However, at higher boron concentration, of 50 mg/L, glycidol-functionalized particles showed higher adsorption affinity of 68.9 mg/g. We conclude that internal hydroxyl groups of polyvinyl alcohol-functionalized particles are less accessible at higher boron concentration. This is the first report on magnesium ferrites for boron recovery. The spent adsorbents were separated easily from the aqueous media by an external magnet and repeatedly used. Overall, our findings demonstrated that the hydroxyl-enriched magnetic nanopowders are a better alternative to the existing boron adsorbents regarding magnetic separation, reusability, and selectivity.  相似文献   

3.
Arsenic (V) adsorption on manganese oxide coated rice wastes was investigated in this study. The modified adsorbents were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and pH measurements to determine the point of zero charge. Batch adsorption equilibrium experiments were conducted to study the effects of pH, contact time, and initial concentration on arsenic removal efficiency. The adsorption capacity of rice waste was significantly improved after modification with permanganate. The Langmuir isotherm model fitted the equilibrium data better than the Freundlich model which confirms surface homogeneity of the adsorbent. Maxima adsorption capacities are determined as 10 and 12 mg/g at pH 3 for manganese oxide coated rice husk and straw, respectively. The adsorption energy indicates that the adsorption process may be dominated by chemisorption. Pseudo-second-order rate equation described the kinetics sorption of arsenic with good correlation coefficients, better than a pseudo-first-order equation. Manganese oxide coated rice husk and straw appear to be promising low cost adsorbents for removing arsenic from water.  相似文献   

4.
The synthesis of 1,3,5-triazine-triethylenetetramine (TATETA), its characterization by infrared spectroscopy and elemental analysis, and its application for removal of Cr(VI) ions from aqueous solution is reported. The effects of pH, contact time, initial concentration of Cr(VI), sorbent dose, and temperature on adsorption were investigated and optimized by batch adsorption experiments. Adsorption was highest at acidic conditions with an equilibration time of 25 min. The adsorption followed a Langmuir model, with an adsorption capacity of 303 mg g?1, was second order in its kinetics, and exothermic and thus spontaneous.  相似文献   

5.
Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from ?32.7 to ?11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L?1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g?1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g?1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.  相似文献   

6.
Minamata disease is caused by methylmercury, which is produced by microorganisms from inorganic mercury ions, Hg(II), in the aquatic environment. Adsorption is a feasible method to remove Hg(II) from waters, but there are some drawbacks when using conventional adsorbents, for example, tedious solid–liquid separation, slow response, and excessive residual levels of mercury. In this work, a novel spongy adsorbent has been developed for Hg(II) removal via surface functionalization of melamine formaldehyde sponge by glutathione. This material mimics a natural antidote that removes trace heavy metals in the human body. Results show that the functionalized sponge displays a 99.99% removal efficiency for low concentrations of Hg(II) of 10 mg/L. As a consequence, the residual Hg concentration is lower than 0.005 mg/L, which is slightly below the standard for total mercury in drinking water, of 0.006 mg/L, formulated by the World Health Organization, and much lower that the discharge regulation standard, of 0.01 mg/L, set by the ministry of environmental protection of China. Adsorption kinetic studies indicate that the functionalized sponge has a fast response. Indeed, the adsorption equilibrium can be reached within 10 min, and about 80% of total adsorption capacities are reached in 1 min. Moreover, the maximum adsorption capacity of the glutathione-functionalized sponge is as high as 240.02 mg/g, as shown by adsorption isotherm. Overall our findings disclose the great potential of the developed sponge adsorbent for rapid and efficient removal of Hg(II) from water.  相似文献   

7.
This investigation describes the use of specially cultivated, nonliving biomass of Trichoderma harzianum as a biosorbent for the batch removal of Pb(II) from a stirred system under different experimental conditions. The metal removal depended upon pH, sorbent particle size, initial Pb(II) concentration, shaking speed, and sorption time. The optimal experimental conditions for the removal of Pb(II) by T. harzianum with an initial metal concentration of 100 mg L?1 were obtained at a particle size of 53 μm, a pH of 4.5, a shaking speed of 200 rpm, and a contact time of 720 min. The results were analyzed in terms of adsorption isotherms and kinetic models. The Freundlich isotherm model and pseudo second-order model fitted well in the data. T. harzianum proved to be a good biomaterial for accumulating Pb(II) from aqueous solutions (q = 460 mg g?1).  相似文献   

8.
Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb–Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe–, Cu–, Pb–, and Zn–organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal–contaminated sites.  相似文献   

9.
Laboratory and field filtration experiments were conducted to study the effectiveness of As(V) removal for five types of adsorbent media. The media included activated alumina (AA), modified activated alumina (MAA), granular ferric hydroxide (GFH), granular ferric oxide (GFO), and granular titanium dioxide (TiO2). In laboratory batch and column experiments, the synthetic challenge water was used to evaluate the effectiveness for five adsorbents. The results of the batch experiments showed that the As(V) adsorption decreased as follows at pH 6.5: TiO2 > GFO > GFH > MAA > AA. At pH 8.5, however, As(V) removal decreased in the following order: GFO = TiO2 > GFH > MAA > AA. In column experiments, at pH 6.5, the adsorbed As(V) for adsorbents followed the order: TiO2 > GFO > GFH, whereas at pH 8.5 the order became: GFO = TiO2 > GFH when the challenge water containing 50 μg/L of As(V) was used. Field filtration experiments were carried out in parallel at a wellhead in New Jersey. Before the effluent arsenic concentration increased to 10 μg/L, approximately 58,000 and 41,500 bed volumes of groundwater containing an average of 47 μg/L of As(V) were treated by the filter system packed with GFO and TiO2, respectively. The As(V) adsorption decreased in the following sequence: GFO > TiO2 > GFH > MAA > AA. Filtration results demonstrated that GFO and TiO2 adsorbents could be used as media in small community filtration systems for As(V) removal.  相似文献   

10.
Al3+-bentonite clay (Alum-bent) was prepared by ion exchange of base cations on the matrices of bentonite clay. Intercalation of bentonite clay with Al3+ was performed in batch experiments. Parameters optimized include time, dosage, and Al3+ concentration. Physicochemical characterization of raw and modified bentonite clay was done by X-ray fluorescence, X-ray diffraction, energy dispersive X-ray spectrometry attached to scanning electron microscopy, Brunauer–Emmett–Teller analysis, cation exchange capacity (CEC) by ammonium acetate method, and pHpzc by solid addition method. Chemical constituents of water were determined by atomic absorption spectrometry (AAS), ion selective electrode (Crison 6955 Fluoride selective electrode) and a Crison multimeter probe. For fluoride removal, the effect of contact time, adsorbent dosage, adsorbate concentration, and pH were evaluated in batch procedures. The adsorption capacity of fluoride by modified bentonite clay was observed to be 5.7 mg g?1 at (26 ± 2) °C room temperature. Maximum adsorption of fluoride was optimum at 30 min, 1 g of dosage, 60 mg L?1 of adsorbate concentration, pH 2–12, and 1:100 solid/liquid (S/L) ratios. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order model than pseudo first order. Adsorption data fitted well to both the Langmuir and Freundlich adsorption isotherms, hence, confirming monolayer and multilayer adsorption. Alum-bent showed good stability in removing fluoride from ground water to below the prescribed limit as stipulated by World Health Organization. As such, it can be concluded that Alum-bent is a potential defluoridation adsorbent which can be applied in fabrication of point of use devices for defluoridation of fluoride-rich water in rural areas of South Africa and other developing countries. Based on that, this comparative study proves that Alum-bent is a promising adsorbent with a high adsorption capacity for fluoride and can be a substitute for conventional defluoridation methods.  相似文献   

11.
An experimental study was carried out to explore the possibility of using a prepared microporous material, Rice Husk Ash (RHA) as an alternative to the commercial Powdered Activated Carbon (PAC), to remove atrazine (ATZ) pesticide from aqueous solution. The effects of contact time and pH on the adsorption were studied using the batch technique. Based on Hückel model calculations, the zwitterion behaviour of atrazine molecule was proved to be related to the pH of zero charge point of adsorbents (6.8 for RHA and 8.2 for PAC). The results showed that the Pseudo Second Order model is applicable to both adsorbents, suggesting that chemisorption is the rate-limiting step. The equilibrium data fitted well with the Langmuir model in the case of RHA, whereas the Freundlich model better fitted the equilibrium data in the PAC case, suggesting the existence of multi-layer adsorption of atrazine. The adsorption for RHA was found to be feasible and spontaneous, with a removal capacity of atrazine of more than 7?mg?g?1. With regard to the BET surface, this removal capacity (50.5?µgATZ / m²RHA) was 25% better than that PAC (37.75µgATZ / m²PAC).  相似文献   

12.
Mercury adsorption by silica and maghemite nanoparticles (NPs) was studied with the aim of comparing their performance in the remediation of acid mine drainage (AMD) contaminated water. Calculated distribution coefficients (Kd) showed that both NPs are exceptional adsorbents. However, adsorbate coverage per unit area was 30 times higher for maghemite than for silica NPs, despite the latter having a surface area ~15 times greater. Maghemite adsorbed 75% of available Hg compared to 56% by silica, making it a more efficient sorbent than silica under AMD conditions. Kinetics and isotherm data for both adsorbents were fitted by the pseudo-second-order (R2 = 1) and the Freundlich (R2 ≥ 0.98) models, implying that adsorption to both NP types was by chemisorption. Adsorption increased with NP concentrations and pH and was enhanced in the presence of manganese and sulfate ions although adsorption to silica was inhibited in 1:2 Hg-to-Mn systems. Importantly, trends in simulated wastewater were replicated in actual AMD-contaminated water samples. This study highlights the fact that properties besides surface area and charge of adsorbents determine adsorbent performance, and superior attributes may not always lead to higher adsorption efficiencies.  相似文献   

13.
In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor (RL<1) for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.  相似文献   

14.
Removal of selenite [Se (IV)] from aqueous solution on to industrial solid ‘waste’ Fe(III)/Cr(III) hydroxide as adsorbent was investigated in the present article. Maximum adsorption was found to be at pH 4.0. Pretreated Fe(III)/Cr(III) hydroxide was found to be more efficient for the removal of selenite compared to untreated adsorbent. Langmuir and Freundlich isotherms have been studied. The Langmuir adsorption capacity (Q 0) of the pretreated and untreated adsorbents was found to be 15.63 and 6.04?mg?g?1, respectively. The adsorption process fit into the second-order kinetics. Thermodynamic parameters show that the adsorption process is spontaneous and endothermic in the temperature range 32 to 60°C. Coexisting anions vanadate and phosphate significantly affect the adsorption of selenite for both the pretreated and untreated adsorbents. Molybdate, thiocyanate, sulphate, nitrate and chloride do not significantly affect the removal of selenite for pretreated adsorbent.  相似文献   

15.
The adsorption of copper, zinc, cobalt, lead and cadmium ions onto Colpomenia sinuosa was studied as a function of contact time, initial metal ion concentration and initial pH. In addition, desorption studies were performed. Characterisation of this adsorbent was also confirmed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis. Batch adsorption experimental data were analysed using Langmuir, Freundlich and Dubinin–Raduschkevich (D–R) adsorption isotherms. The results indicated that the biosorption equilibrium was well described by both the Freudlich and D–R isotherms. Moreover, sorption kinetics was performed and it was observed that equilibrium was reached in<60 min, which could be described by the pseudo-second-order kinetic model for all heavy metals. The sorption of heavy metals onto the biomass was largely dependent on the initial solution pH. The elution efficiency for heavy metal ions desorption from C. sinuosa was determined for 0.1 M HCl, 1.0 M HCl and 1.0 M HNO3. Desorption efficiency and also adsorption capacity were highest for Pb(II). The results indicate that C. sinuosa has great potential for the removal of heavy metals in an ecofriendly process.  相似文献   

16.
The effect of four low molecular weight organic acids on F adsorption by two variable charge soils was investigated using a batch method. The organic acids reduced F adsorption through competition by the acids with F for sorption sites. Oxalic and malonic acids, both of which have simpler chemical structures, were more effective than citric or malic acid. The effect of organic acids on F adsorption was more prominent at higher pH values and with larger amounts of the organic acids. The desorption study showed that the organic acids enhanced the desorption of F adsorbed by the soils. In the control and malic acid systems, desorption increased sharply with decreasing pH, while in the oxalic acid system, desorption rose slightly with decreasing pH. Desorption also increased with increasing amount of organic acid added. There are two possible mechanisms for the effect of the organic acids on F adsorption and desorption: (1)␣competition of the organic acids with F for adsorption sites and (2) dissolution of the adsorbents, especially dissolution of soil Al.  相似文献   

17.
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l?1), pH, contact time, and sorbent concentration (2–6 g l?1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l?1 of Cr6+ concentration on 5 g l?1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g?1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin–Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol?1 for 25 and 50 mg l?1 chromium concentration, respectively.  相似文献   

18.
A simple solvothermal method was used to prepare monodisperse magnetite (Fe3O4) nanoparticles attached onto graphene oxide (GO) sheets as adsorbents to remove tetrabromobisphenol A (TBBPA) from an aqueous solution. These Fe3O4/GO (MGO) nanocomposites were characterized by transmission electron microscopy. The adsorption capacity at different initial pH, contact duration, and temperature were evaluated. The kinetics of adsorption was found to fit the pseudo-second-order model perfectly. The adsorption isotherm well fitted the Langmuir model, and the theoretical maximum of adsorption capacity calculated by the Langmuir model was 27.26 mg?g-1. The adsorption thermodynamics of TBBPA on the MGO nanocomposites was determined at 303 K, 313 K, and 323 K, respectively. The results indicated that the adsorption was spontaneous and endothermic. The MGO nanocomposites were conveniently separated from the media by an external magnetic field within several seconds, and then regenerated in 0.2 M NaOH solution. Thus, the MGO nanocomposites are a promising candidate for TBBPA removal from wastewater.  相似文献   

19.
We report the adsorption isotherm of acid dye on the surface of chitin, a unique solid adsorbent. Adsorption process offers an attractive benefit for a dyeing house treatment. Influences of essential kinetic parameters such as adsorbent particle size, reaction temperature governing the dye adsorption have been investigated. Adsorptions isotherms of dye on chitin were developed and the equilibrium data fitted well to the Langmuir, Freundlich and Redlich Peterson isotherm model. At optimum conditions maximum dye adsorption capacity of chitin estimated with the Langmuir 44.0, 85.0, 104.3 mg/g and 85.0, 114.10, 113.62 mg/g adsorbent. The results showed that chelating polymer of chitin could be considered as potential adsorbents for acid dye removal from dilute solution.  相似文献   

20.

Chloramphenicol is a broad-spectrum bacterial antibiotic used against conjunctivitis, meningitis, plague, cholera, and typhoid fever. As a consequence, chloramphenicol ends up polluting the aquatic environment, wastewater treatment plants, and hospital wastewaters, thus disrupting ecosystems and inducing microbial resistance. Here, we review the occurrence, toxicity, and removal of chloramphenicol with emphasis on adsorption techniques. We present the adsorption performance of adsorbents such as biochar, activated carbon, porous carbon, metal–organic framework, composites, zeolites, minerals, molecularly imprinted polymers, and multi-walled carbon nanotubes. The effect of dose, pH, temperature, initial concentration, and contact time is discussed. Adsorption is controlled by π–π interactions, donor–acceptor interactions, hydrogen bonding, and electrostatic interactions. We also discuss isotherms, kinetics, thermodynamic data, selection of eluents, desorption efficiency, and regeneration of adsorbents. Porous carbon-based adsorbents exhibit excellent adsorption capacities of 500–1240 mg g?1. Most adsorbents can be reused over at least four cycles.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号