首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
新型污染物及其生态和环境健康效应   总被引:4,自引:0,他引:4  
近年来,随着现代分析手段的改进和发展,各种污染物检测能力的提高,以及新的毒作用模式的发现、新合成化合物的制造和使用等,一些物质成为广受国内外关注的新型污染物.新型污染物已在世界范围内对环境和生态系统造成了污染,对生态系统中包括人类在内的各种生物均构成了潜在的危害.目前,人们关注较多的新型污染物主要有全氟有机化合物、人用与兽用药物、饮用水消毒副产物、遮光剂/滤紫外线剂、人造纳米材料、汽油添加剂、溴化阻燃剂等.论文在总结国内外相关研究基础上,对一些重点新型污染物的生态效应及其潜在健康影响进行了简要综述,为我国开展这方面的研究提供了一定的参考.  相似文献   

2.
Bifenthrin is a chiral synthetic pyrethroid insecticide that has been commonly used for agricultural and domestic pest control over the past decades. Due to its widespread application, residues of bifenthrin has been frequently detected in environmental media, residential areas and biota, thus posing potential risks to the health of wildlife and humans. In particular, bifenthrin exhibits high acute lethal toxicity to aquatic species, and it is the primary contributor to the toxicity of insecticides in waters. Additionally, bifenthrin can also cause sublethal toxic effects on various non-target organisms, including developmental toxicity, neurobehavioral toxicity, oxidative damage, immune toxicity and endocrine disrupting effects. Here we review recent studies about the fate of bifenthrin in the environment and biological systems, the toxicity of the chiral parent compound bifenthrin and the toxic effects of main metabolites. The adverse effects of bifenthrin, identified from both in vitro and in vivo studies, and the potential underlying mechanisms are presented. We discuss the enantiomeric difference in the toxicological effects of bifenthrin, since enantiomers of chiral compounds show different interactions with biological systems. Pyrethroid insecticides metabolites are not acutely toxic, but they have sublethal toxicity, such as endocrine disrupting effects and immunotoxicity. We provide emerging evidence for toxic effects of several main metabolites.  相似文献   

3.
The German Environmental Advisory Council evaluated German water protection policies in its last environmental report (2004) concluded that despite some great successes in this area there is still considerable need for action. Specifically, diffuse nutrient and chemical substances inputs remain an unsolved problem. The contamination of surface and groundwater with pharmaceuticals has been identified as an environmental risk increasing in pertinence. Pharmaceuticals and their metabolites are being detected in the whole aquatic environment, which they enter through sewage, soil contamination by agriculture, and waste storage facilities. Different pharmaceuticals have been tested for acute toxicity on various aquatic organisms, but almost nothing is known about chronic toxicity of these contaminants. This knowledge, however, is essential for estimating the ecotoxicological potential of pharmaceutical residues. In the opinion of the Environmental Council different strategies are necessary, to reduce the contamination of the environment with pharmaceuticals. Farmers should refrain from using pharmaceuticals for prophylactic purposes or from using hormonally or antibiotically active substances in livestock feed additives, so as to reduce inputs of veterinary drugs. As regards human medications, packaging should better correspond to appropriate dosage amounts, and environmentally responsible disposal measures should be followed. Still under discussion are a programme for the risk evaluation of existing pharmaceuticals and a ban on the use of sewage sludge in agriculture. In the future, improvement of sewage treatment facilities, for instances through membrane technologies, will offer further potential to reduce inputs of hazardous substances.  相似文献   

4.
Silver nanoparticles (NP) are used in several applications, including their use as antimicrobial agents in textiles, personal care, and other domestic products. As such, there is a high potential for the release of silver nanoparticles (AgNP) in the aquatic environment. In aquatic ecosystems, nanomaterials are affected by abiotic factors, such as temperature, that alter their chemistry and influence their fate in the environment. Preliminary studies indicate that NP tend to form aggregates which are potentially more recalcitrant than unaggregated NP. These and other fate processes are largely dependent on both the characteristics of the NP and that of the environment. In this study, lab experiments were conducted to investigate the physicochemical properties and temperature solubility of AgNP (<100 nm) that may potentially influence the fate and behavior of AgNP in the aqueous environment. Results indicated that, under these tested conditions, AgNP may be transformed in size and thereby affect fate, bioavailability, and toxicity. In this study, a novel method was used to determine whether AgNP would form agglomerates, or behave as isolated particles, or dissolve when in aqueous media and under different environmental conditions. The new aspects evaluated in this study demonstrated that AgNP are transformed in both size and state under variable environmental conditions.  相似文献   

5.
Aim The aim of this work was to investigate, which human and veterinary pharmaceuticals are of high ecological relevance due to the input into the environment as well as with regard to the effects and behaviour in the environment. Furthermore, the state of knowledge concerning the ecologically relevant substances and the need of research was evaluated. Methods A two-step approach considering the criteria quantity of sold pharmaceuticals, concentrations, effects and fate in the environment was developed to identify the pharmaceuticals of potential ecological relevance. In a second step the identified individual substances and groups of substances were considered in more detail concerning metabolism, environmental behaviour and ecological effects. Results In a first step 29 out of approximate 2,700 licensed human pharmaceuticals and seven substances as well as three substance groups used in veterinary medicine were identified as potentially ecologically relevant. The detailed assessment in a second step lead to the conclusion, that of the human pharmaceuticals 9 substances as well as two substance groups concerning the environmental behaviour and seven substances concerning the effects are of high environmental relevance. Concerning the environmental behaviour six out of seven veterinary pharmaceuticals as well as three substance groups and only three substances concerning the ecological effects were classified as relevant for the environment. Discussion By means of the presented method it was possible to limit the scope of a wide spectrum of pharmaceuticals, so that a detailed assessment of only relevant active agents was possible. Nevertheless, it is a precondition that investigations concerning the occurrence, fate and effects of the individual compounds in the environment have been already carried out and published in the literature. Conclusions The method is suitable for a comprehensive assessment of the ecological relevance of pharmaceuticals, but for a lot of human and veterinary pharmaceuticals the data available in the literature are insufficient. Recommendations For a final extensive assessment of the environmental relevance for some of the human and veterinary pharmaceuticals more studies are necessary. Especially data concerning the environmental behaviour in water and soils, data from long-term-studies for the assessment of ecological effects and data concerning metabolites and mixtures of pharmaceutical compounds are lacking.  相似文献   

6.
根据文献报道,我国地表水中已检出至少144种药物及个人护理用品(pharmaceuticals and personal care products,PPCPs),包括抗生素、激素、其他药物、个人护理品(personal care products,PCPs)4大类,其中检出浓度最高的达到了μg·L~(-1)量级,在长期的污染下有可能对水生生物产生内分泌干扰效应或繁殖毒性,进而影响到整个水生生物种群的繁衍变化。因此,有必要根据我国地表水中PPCPs的污染水平,筛查出具有潜在生态风险的PPCPs。由于目前缺乏针对PPCPs类污染物的筛选体系,以国内外优先控制污染物筛选体系为基础,借鉴基于风险的欧洲兽药分级方法,利用风险指数(risk index,RI),筛选得出目前我国的地表水中有16种具有繁殖毒性的PPCPs的RI1,包括1种抗生素,5种激素类药物,3种其他药物和7种PCPs,其中乙炔雌二醇(ethinylestradiol,EE2)的RI最高(115 730),其次是壬基酚(nonylphenol,NP)(1 796)、邻苯二甲酸二丁酯(dibutyl phthalate,DBP)(255.31),对水生态环境有较高的风险的PPCPs需进一步进行较高层次的风险评价。  相似文献   

7.
ABSTRACT

Microplastics are emerging environmental pollutants that have gained tremendous scientific interest in recent years. These micropollutants are omnipresent both in the terrestrial and aquatic environments posing a deleterious threat to the ecosystem and biodiversity. So, it is important to develop a deep understanding of the environmental fate and potential adverse impacts of microplastics on the aquatic and terrestrial environments. By critically reviewing the previously published scientific literature, the present synthesis briefly outlines the characteristics, occurrence and potential toxic effects of microplastics on terrestrial and aquatic biota. The article also focuses on some innovative approaches for sustainable remediation of macroplastics as well as microplastics. Since the concept of microplastics pollution has yet in its infancy in Bangladesh, this synthesis provides an overview of the current scenario of microplastics pollution and some future research recommendations in the context of Bangladesh which might be helpful to the novice researchers of this field.  相似文献   

8.
环境中有机紫外防晒剂残留及其生态毒性研究进展   总被引:1,自引:0,他引:1  
有机紫外防晒剂被广泛添加在个人护理品中,随着日常使用源源不断地进入环境中,成为一类新兴污染物。环境介质中有机紫外防晒剂的检测及其生态毒理是目前的研究热点。概述了个人护理品中常用的有机紫外防晒剂,总结了有机紫外防晒剂在各类地表水、沉积物和生物体等不同介质中的浓度水平,详细分析了有机紫外防晒剂对鱼类的内分泌干扰效应和对水生无脊椎动物的急性毒性,为今后深入研究和科学评价这类新兴污染物提供重要参考。  相似文献   

9.
环境水体中检测到大量药物的存在,主要包括抗生素,抗惊厥抗抑郁药物,解热和非甾体消炎药,血脂调整剂,β-阻滞剂等。传统的水处理技术并不能有效地去除这些药物,存在于水体中的环境药物对公共健康的潜在危害引起了广泛的关注。文中简要地介绍了近年来光催化技术在降解环境药物动力学和机理方面的研究进展,试图找出水体中环境药物降解的一般规律,为环境水体中该类物质的迁移和转化提供理论依据。  相似文献   

10.
The global consumption and production of pharmaceuticals is increasing concomitantly with concern regarding their environmental fate and effects. Active pharmaceutical ingredients are mainly released into the aquatic environment through wastewater effluent discharge. Once in the environment, pharmaceuticals can undergo processes of natural attenuation, i.e. dilution, sorption, transformation, depending on physico-chemical properties of the compound, such as water solubility, lipophilicity, vapour pressure, and environmental conditions, such as pH, temperature and ionic strength. A major natural attenuation process is the sorption on dissolved organic matter, colloids, suspended solids and sediments, which in turn control pharmaceuticals distribution, residence time and persistence in aquatic systems. Here we review studies of sorption capacity of natural sorbents to pharmaceuticals. These report on the importance of several environmental and sorbent-specific properties, such as the composition, quality, and amount of the sorbent, and the environmental pH, which determines the speciation of both the sorbent and compound. The importance of accounting for distribution processes on freshwater sorbents for any determination of environmental concentrations of pharmaceuticals is apparent, while the reliability of surrogate standards for measuring dissolved organic matter (DOM) distribution is evaluated in the context of the need for robust environmental risk assessment protocols.  相似文献   

11.
Background, Aim and Scope Active substances for use in biocidal products can potentially occur as micropollutants in natural waters. Biocides, which are used in Switzerland for non-agricultural applications, should be evaluated and prioritized with regard to their respective environmental risks. The following questions were emphasized: Which active substances are used for which purposes and in which amounts? Is there discharge to the aquatic environment? What are the environmental behaviours and ecotoxicological effects of these biocides? How can a prioritization be achieved? Which active substances should be suggested for further assessments? Methods Manufacturing firms, sales organisations, users and environmental experts were identified as key stakeholders for the issues of this project. Chemical identities, product compositions, used amounts, product types, ways and places of applications were elucidated. A database was established with information on approximately 1760 products with totally 277 active substances. A prioritization procedure was established, providing a distinction of the active substances. For priority setting, water pollution risks by biocides were evaluated based on potential environmental emissions as well as on environmental behaviour and ecotoxic effects. Results In the European Union 372 active substances were notified for biocidal products, which accounted for use of 7500 tons per year in Switzerland. More than 95?% of the total use bases on 30 active substances, of which seven are rapidly biodegradable. A group of experts determined 22 substances as candidates for an extended assessment. It became evident that many active biocidal substances are highly ecotoxic und could, therefore, cause an augmented environmental risk Discussion It could be shown which active substances are applied in Switzerland in substantial amounts. Although close to 300 active biocidal substances are used, only about 30 substances are employed in relevant amounts of more than 5000?kg per year. For 22 active substances with low biodegradability, a potential environmental risk for natural surface waters can be inferred. These active substances are used at amounts comparable to the pesticides.  相似文献   

12.
Three cyclic volatile methylsiloxanes (cVMS) were widely used in various processes of production and industrials and frequently added to consumer products. cVMS are continuously released into the environment, causing increasing environmental and human exposing risks. cVMS were investigated in air, water, biogas, soil, sediment, biosolid and organism. Many scholars focused on the occurrence, behaviours, fate and effects of cVMS in environmental matrices all over the world. However, few studies paid attention to the environmental behaviour of cVMS in the solid phase. We assessed their environmental behaviour and fate in soil, biosolid and sediment. High concentrations of cVMS were detected in biosolids. Volatilisation, adsorption and degradation were the major environmental behaviours for cVMS in the solid phase. Although some aquatic organisms showed an appropriate level of bioaccumulation and bioconcentration, there were no obvious evidence of trophic biomagnification in aquatic food webs for octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5). In addition, cVMS in the environment have not impacted for natural organisms because the concentrations in soil and sediment have not exceeded the maximum no-observed-effect-concentration threshold. Finally, regarding the major environmental behaviour in soil and sediment, suggestions for further study are proposed.  相似文献   

13.
在如今超过1 500种在用原料药中,环境中发现几率明确和对环境影响明确的原料药所占比例很小。由于很难监管所有在用原料药,众多先前的研究提议将原料药按照受关注程度排序,从而可以将研究资源集中于那些最受瞩目的药物。然而这些研究都存在局限性,本文从之前优先性方法的实践经验出发,提出了一种更为全面的原料药排序方法。该方法基于对水生生物、土壤生物、鸟类、野生哺乳动物和人类的风险,综合考虑了食物链顶端存在的生态毒理学研究终点和由这些治疗性药物作用机制带来的非顶端效果。对于在英国社区以及医院设置中使用的146种活性药物的分析可以更为详细地说明该方法的运用。根据这一方法,我们将16种化合物列为优先考虑的药物。这些药物包括了抗生素、抗抑郁药、抗炎药、抗糖尿病药、抗肥胖药、雌激素类化合物以及相关的代谢产物。我们建议这种优先性方法在将来可以更广泛地应用于世界上不同的地区。
精选自Jiahua Guo, Chris J. Sinclair, Katherine Selby, Alistair B.A. Boxall. Toxicological and ecotoxicological risk based prioritisation of pharmaceuticals in the natural environment. Environmental Toxicology and Chemistry: Volume 35, Issue 7, pages 1550–1559, July 2016. DOI: 10.1002/etc.3319
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3319/full
  相似文献   

14.
辛琦  章强  程金平 《生态毒理学报》2014,9(6):1014-1026
纳米银作为一种新兴的纳米材料,由于其独特的抗菌性能而被广泛应用于各种商业化产品中。广泛的应用增加了它进入环境尤其是水环境的机率,从而对鱼类等水生生物产生潜在毒性效应。因此,近年来陆续开展了关于纳米银对鱼类的毒理学研究。本文根据国内外文献查阅及分析,综述了纳米银的制备、特性、应用、释放情况以及近几年来纳米银对鱼类的毒理学研究进展,对今后进一步开展相关研究工作提供参考。  相似文献   

15.
纳米技术已成为21世纪发展最迅猛的技术领域之一。纳米材料因其具备新异的物理、化学特性而广泛应用于各种领域,包括农业,电子工业,生物医学,制造业,医药品和化妆品等,因此纳米颗粒不可避免会释放到水环境中。贝类由于其具有分布广,处于食物链中的关键位置,滤食食性,对重金属及污染物有较强的生物累积能力,且很多贝类具有养殖和商业价值,因而纳米颗粒对贝类的生态毒性效应备受关注。本文通过对已有相关研究成果进行归纳分析,重点阐述了3方面的内容:1)人工纳米材料在水环境中的行为;2)贝类作为水生污染监测指示生物的重要意义;3)人工纳米材料对贝类的毒性效应,主要包括贝类对纳米颗粒摄取、积累和转移,并从组织细胞水平,分子和基因水平,胚胎发育和个体生长水平等阐述了纳米材料对贝类的毒性效应。  相似文献   

16.
水体作为环境污染因子的最终归宿,不仅容纳了越来越多的有毒物质,而且由于水体的立体性,水生生物极易受到多种因子的复合污染,易造成潜在的生态和健康风险。其中,重金属和持久性有机污染物因分布广、难降解且毒性效应复杂等特点,对水生生态易造成潜在危害而受到广泛的关注。环境污染往往是以混合物的形式联合存在,而联合毒性作用的相关研究较少。因此,本文围绕近年来典型重金属和全氟化合物的单一毒性,以及复合污染对水生动物的联合毒性作用进行了综述,现有的研究结果表明,复合污染对生物体存在联合毒性作用,可能表现为单一元素毒性作用、协同作用或拮抗作用,并对存在的问题和今后的关注重点进行了探讨,以便为未来的研究提供借鉴。  相似文献   

17.
随着纳米科技的迅猛发展,人工碳纳米材料的生产和使用逐年递增,越来越多的碳纳米材料进入水环境中,对水生生物产生毒性效应。本文在介绍了碳纳米球、石墨烯、碳纳米管3种碳纳米材料的基础上,分析了碳纳米材料的水环境行为,重点综述了碳纳米材料对水生生物毒性效应研究现状,以及可能的致毒机制,并指出今后碳纳米材料对水生生物毒理学亟待加强的研究领域。  相似文献   

18.

Background

The presence of a large spectrum of pharmaceutical agents has been reported for aquatic environments (surface—and groundwater) and other aquatic media (influents and effluents of sewage treatment plants) in Germany and beyond, including their occurrence in drinking water. Considering the large number of pharmaceuticals produced for human use and released into the environment, various authors (Sattelberger 1999, Hanisch et al. 2004, Castiglioni et al. 2006, IWW 2006, Stockholm County Council 2006) tried to compile ‘priority lists’ focusing on those substances with environmental relevance. The following agents are included in all lists: ciprofloxacine, clarythromycine (antibiotics), carbamazepine (anti-epileptic agent), bezafibrate (lipid reducer), clofibric acid (lipid reducer metabolite), ethinylestradiol (sex hormone) and cylophosfamide (cytostatic agent). The agents erythromycine and sulfamethoxazole (antibiotics), ibuprofen, indometacine, propyphenazone (analgesics), atenolol (beta-blocker) and ifosfamide (cytostatic agent) can be found in three of four priority lists.

Results

Pharmaceuticals mainly enter the aquatic environment via effluent water, coming from wastewater treatment plants (including hospital and household sewerage), untreated discharges (e.g, secondary transfer of active agents into ground- and surface waters via sewage sludge application in agriculture and via landfill leachate) and leakages in the municipal sewer network.

Discussion

Potential activities towards a reduced release of pharmaceuticals into the environment should consider primarily the origin of the exposure to allow a separation of drug containing flows already at the source. Following the latter it would be possible to minimize the contamination of spring-, ground- and surface waters which serve as raw water resources for drinking water supply. However, considering the actual water pollution with pharmaceuticals and other substances, ‘end-of pipe’ techniques in the sewage and drinking water treatment are absolutely essential.

Conclusions

Sustainability criteria (e.g. protection of drinking water resources, habitats and biocoenoses, recycling and economizing use of resources) and economic aspects of modern sewage disposal concepts require a useful choice and combination of technical measures as components of centralized and decentralized sewage and drinking water treatment methods. It is though not realistic to cover and eliminate all pharmaceutical agents of environmental relevance equally effective even if a catalogue of potential technical treatment methods is elaborated thoroughly. Therefore, a concentration of efforts on selected drug agents, at least following initially some of the priority lists, is recommended.

Recommendations and Perspectives

The contamination of the water cycle with pharmaceuticals is nevertheless not exclusively to be solved via the application of technical methods. The BMBF (Federal Ministry for Education and Research) funded project start (Management Strategies for Pharmaceuticals in Drinking Water, www.start-project.de) therefore tries by implementation of a transdisciplinary approach to integrate technical-, behavioral-, and agent-orientated management strategies towards a more comprehensive and sustainable problem solution.  相似文献   

19.
针对水处理过程的消毒环节,着重探讨了医药品和个人护理用品(PPCPs)等新型环境污染物在氯化消毒过程中发生的转化行为,并分别针对酚类、醇类、醚类、酮类、胺类等典型结构化合物的氯化转化规律进行了归纳总结.同时,对消毒副产物所引起的潜在环境风险、健康效应进行了评述,为研发、优化该类污染物的处理工艺、提高风险管理水平提供科学依据.  相似文献   

20.

Goal

In the Brandenburg State Office for the Environment an approach to assess the potential risk of drug residues in aquatic ecosystems has been developed based on an investigation of the consumption amounts in 1999 to identify or to exclude a potential environmental risk of important human drugs and further to define priority substances for monitoring programs in Brandenburg in the future.

Method

This assessment approach tested with 60 drug agents is based on an exposure estimation considering the main path for the entry human—waste water—sewage plant—surface water, on a substance specific analysis of effects and on an analysis of the environmental fate as compartment distribution, bioaccumulation and persistence.

Results

In Brandenburg surface waters the drug agent concentration for eight of the considered substances is supposed to be greater than 1 μg/l and for at least 13 of the considered substanoes the PNEC in aquatic ecosystems is assumed to be lower than 1 μg/l. A potential risk for the environment can be seen for the antibiotics Ciprofloxacin-HCl and Clarithromycin, the disinfectants Benzalkonium Chloride, Cocospropylendiaminguaniacetat, Glucoprotamine, Laurylpropylenediamine and Polyvidone-iodine, the sexual hormon Ethinylestradiol, the antidiabetic Metformin-HCl, the antiepileptic Carbamazepine and the lipid regulator Clofibrinic acid on the basis of effects because their PEC:PNEC-relation is about 1 or higher. For further 19 drug agents an environmental risk is to be assumed because of their environmental behaviour without support by ecotoxicological data at present.

Conclusion

Although there is only a small base of valid ecotoxicological data, this risk assessment shows that adverse effects in the aquatic environment by some drug agents cannot be excluded. However, it should be noted that this first assessment gives only a crude orientation. Appropriate test data are necessary to refine the assessment in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号