首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the number of vehicles expected to increase to 1.85 billion by 2030 and the scrap generated from end-of-life vehicles (ELVs) expected to be 3.71 billion tonnes, there is a strong motivation to properly process the flow of these materials. The EU Directive on end-of-life vehicles (EU ELV Directive) aims to increase recovery and recycling rates of ELVs in order to reduce waste and improve environmental performances. Long-term optimization planning of vehicle recycling is increasingly important. However, there is a lack of research of uncertainties in the vehicle recycling system, none of the previous studies analyzed the linkage and trade-offs between decision risk and system performances, and no previous research was reported on interval-based programming for vehicle recycling planning problem. In order to meet the imposed eco-efficiency quotas, maximize system profit and minimize decision risk, and at the same time fill the identified research gaps, a risk explicit interval linear programming model for optimal long-term planning in the EU vehicle recycling factories was developed. It can create optimal plans for procuring vehicle hulks, sorting of generated material fractions, allocation of sorted waste flows and allocation of sorted metals for desired value of the system aspiration level. A numerical study demonstrated the potentials and applicability of the proposed model. Vehicle recycling factories aim at reaching the highest possible level of quantity and quality of sorted metal flows. The future eco-efficiency quotas will not endanger their business. The success of the final phase of implementation of the EU ELV Directive is not jeopardized, because even the future eco-efficiency quotas were reached in all created test problems. Quantity of land-filled wastes will be radically reduced after January 1, 2015. The model results and trade-offs would be valuable for supporting the EU vehicle recycling factories in creating optimal long-term production strategies and reducing the risk for uncertain situations.  相似文献   

2.
The European Union has set ambitious objectives for the recovery rates of end-of life vehicles (ELVs). The directive 2000/53/CE (DIR, 2000) states that by 1st January 2015 at least 95% of the mass of an ELV must be reused and recovered, of which a maximum of 10% should be in the form of energy.In order to identify the key factors for improving the rate of material reuse, recycling and recovery of ELVs, ACYCLEA (PRAXY group) launched the “OPTIVAL VHU (ELV)” research program in collaboration with INSA Lyon in 2009. Three experimental campaigns were conducted on the industrial site of ACYCLEA to compare different scenarios of deconstruction. The campaigns were done on samples of 90 ELVs. The average mass (MELV) and age were estimated at 989 kg/ELV and 14 years, respectively. This article presents the results concerning the material balances of the successive operations. The contribution of each stage of the treatment (namely (i) depollution, (ii) deconstruction, and (iii) shredding and sorting operations) to the rate of recycling, reuse and recovery was calculated.Results showed firstly that the contribution of the operations of depollution was low (3.6 ± 0.1% of the mass of vehicles). The contribution of the operations of deconstruction was higher and increased logically with the degree of deconstruction. It ranged from 5% of MELV for the minimal level of deconstruction (campaign 1) to almost 10% with the highest level of deconstruction (campaign 3). The specific contribution of the operations of deconstruction to the rate of metal recycling was found to be quite low however, in the range of 2.6–2.8% of MELV, Shredding and post-shredding sorting operations enabled the recovery of the largest amounts of recyclable materials but no significant differences were observed between the overall recovery rates in the three campaigns (results ranged from 67 to 70% of MELV). Differences were observed however, for specific fractions such as the automotive shredder residues whose recovery rate was 16.3 ± 0.7%, 13.0 ± 0.5%, and 12.8 ± 0.2% for campaigns 1, 2 and 3, respectively. A larger production of non-ferromagnetic fraction was also observed in campaign 3, probably due to the extraction of the textiles during the dismantling operations which improved the efficiency of post-shredding sorting operations.The highest overall rate of reuse, recycling and energy recovery obtained in this study with the most rigorous approach was 81.5 ± 0.6% of the average mass of the ELV even with the highest level of deconstruction. It therefore appears that the European regulatory target of 95% would be difficult to achieve in 2015, except with a much greater optimization of the sorting technologies and the development of recycling processes.  相似文献   

3.
In Europe targets have been laid down by EU legislation for the recycling rate of end-of-life vehicles to be achieved within the nearby future. It is illustrated in this paper that the definition of the recycling rate and the realisation of the imposed targets are very much dependent on different parameters such as the changing lifetime of the product and product design. It may seem obvious that the recycling rate is determined by various time-varying factors, however, this paper endeavours to describe and quantify the role of these factors on the recycling rate over time by the use of a dynamic systems model. This model permits the prediction of the recycling rate as a function of the numerous presented parameters, changing design scenarios etc. In addition, different definitions of the recycling rate will be presented and discussed. This will lead to a better understanding of the parameters affecting the recycling system and a more precise understanding of the recycling targets and their realisation as imposed by EU legislation. This paper focuses on cars, but the discussion and the definitions derived are equally valid for any end-of-life product.  相似文献   

4.
Shredder residue is the residue from the shredding of end-of-life vehicles and white goods, after removal of the main metals. Approximately 850,000 tonnes of shredder waste is produced in the UK each year, and historically sent to landfill. Due to European legislation such as the End-of-Life Vehicle (ELV) Directive and the Landfill Directive there is pressure to minimise this waste through recycling and recovery.In this paper, primary data are presented showing that 40% of materials are potentially recoverable in the coarser fraction of UK automotive shredder residue (>30 mm). Barriers to such recycling are discussed in the context of several recent drivers, including this waste's possible reclassification as hazardous.The lack of full and timely implementation of the ELV Directive in the UK has made it an ineffective driver, and it is now unlikely that its 2006 recycling targets will be met as intended.  相似文献   

5.
The technical progress causes that increasing number of used devices presents a threat for environment, particularly in the rural areas. It can be prevented by organizing a proper system of waste disposal. Currently, the most important problem to solve is recycling of vehicles. The key element for the improvement of the functioning of the recycling network in Poland is to redesign the system so that it will allow for a reduction of the total cost related to the vehicle recycling. This paper presents a modelling approach that could be used to establish one important part of the reverse logistics (RL) network for end-of-life vehicles (ELVs) by defining the optimum locations for dismantling facilities. The proposed modelling approach is illustrated using Mazovia province in Poland as an example. The optimization criteria for the location of the elements of the recycling network are the components of the total cost of the ELV's recycling. Due to high complexity of the model a genetic algorithm has been adapted for solving the model and getting a good solution in a reasonable run time. The criteria of optimization was cost of the following processes: transportation, storage, and dismantling of ELVs. The results of simulation proved that the transportation costs of parts and materials may amount to about 70%, and that the cost of dismantling may exceed 25% of the total cost of recycling. The obtained results confirmed that genetic algorithm method can be used effectively to location the ELV's dismantling facilities. The effect of changing the location of processing facilities on the location of dismantling stations was also studied. The developed model is universal and may be used to determine the locations of different kinds of facilities organized in a reverse recycling network.  相似文献   

6.
The purpose of this paper is to establish a definitive measure for a recycling rate in various countries. Numerous measures have been used in the past and have been based on a variety of assumptions, so that the literature has become very difficult to interpret. The objective here is to assess and explain how a recycling rate has been established such that it is unambiguous and serves as a reference point for future work. It then becomes possible to compare and contrast the recycling effort in different countries, and determine the potential for increased activity.  相似文献   

7.
As a proactive step towards understanding future waste management challenges, this paper presents a future oriented material flow analysis (MFA) used to estimate the volume of lithium-ion battery (LIB) wastes to be potentially generated in the United States due to electric vehicle (EV) deployment in the near and long term future. Because future adoption of LIB and EV technology is uncertain, a set of scenarios was developed to bound the parameters most influential to the MFA model and to forecast “low,” “baseline,” and “high” projections of future end-of-life battery outflows from years 2015 to 2040. These models were implemented using technology forecasts, technical literature, and bench-scale data characterizing battery material composition. Considering the range from the most conservative to most extreme estimates, a cumulative outflow between 0.33 million metric tons and 4 million metric tons of lithium-ion cells could be generated between 2015 and 2040. Of this waste stream, only 42% of the expected materials (by weight) is currently recycled in the U.S., including metals such as aluminum, cobalt, copper, nickel, and steel. Another 10% of the projected EV battery waste stream (by weight) includes two high value materials that are currently not recycled at a significant rate: lithium and manganese. The remaining fraction of this waste stream will include materials with low recycling potential, for which safe disposal routes must be identified. Results also indicate that because of the potential “lifespan mismatch” between battery packs and the vehicles in which they are used, batteries with high reuse potential may also be entering the waste stream. As such, a robust end-of-life battery management system must include an increase in reuse avenues, expanded recycling capacity, and ultimate disposal routes that minimize risk to human and environmental health.  相似文献   

8.
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   

9.
In policy support of municipal solid waste (MSW) management, life cycle assessment (LCA) can serve to compare the environmental or economic impacts of two or more options for waste processing. The scope of waste management LCAs generally focuses less attention on future developments, e.g., where will recycling take place, and more on the environmental performance of prototypes, e.g., the incineration of all waste compared to recycling. To provide more robust support for Swiss waste glass-packaging disposal, scenarios of Swiss waste glass-packaging are assessed from a life cycle perspective. The scenarios consist in schemes for the disposal of the total amount of Swiss waste glass-packaging, i.e., different combinations of recycling and downcycling in Switzerland or abroad developed in Part I, Meylan et al. (2013). In this article (Part II), the disposal schemes are assessed with respect to eco-efficiency, an indicator that combines total environmental impacts and gross value added in Switzerland. Results show that no policy alternative guarantees environmental impact reductions and gross value added gains under all developments of exogenous constraints. Downcycling to foam glass in Switzerland is not only an environmentally sound disposal option, but it also buffers gross value added losses in case domestic recycling (and thus glass-packaging production in Switzerland) ceases in the future. The substitution of products based on raw materials other than Swiss cullet is the main responsible for change in environmental and economic impacts. Hence, an eco-efficiency maximizing policy should consider the products of disposal schemes. The combination of scenario analysis and eco-efficiency assessment as presented in this paper can be applied to other contexts (i.e., countries, waste fractions).  相似文献   

10.
In developing countries without the availability of reliable pavement management systems, recycling techniques may offer the best alternative for pavement structural rehabilitation. However, for many government officials and contractors there is a clear understanding of the technical advantages of recycling but not a clear perspective of cost saving. Since cost is a relative value among different regions of any country the following work makes an energy analysis of the construction process of the three different rehabilitation techniques available in Chile. Three different structural pavement rehabilitation alternatives were studied and compared using an energy consumption methodology:
  • •Asphalt overlay;
  • •Reconstruction;
  • •Cold in place recycling with foamed asphalt.
The methodology considers different project scenarios by combining expected traffic and soil support values. For each rehabilitation technique and scenario, the construction processes were analyzed and the design layers were transformed to equivalent energy units (MJ/m2).Results show that cold in place recycling utilizes the lowest amount of energy compared with reconstruction or an asphalt overlay in all the scenarios studied, producing more differences when rehabilitating roads for less trafficked roads. The study also concludes that aggregate haulage distance is the most sensitive factor on total energy consumption when comparing the three alternatives.  相似文献   

11.
The 2006 end-of-life vehicles (ELVs) directive target for the recycled and reused material content of an ELV has been undertaken using the current recovery infrastructure within the UK. The current expectation is that the conformance for the 2006 recycling target will be mainly achieved using existing post-fragmentation separation technologies rather than manually disassembling vehicles into their constituent materials. With the economic pressure of the current legislative targets weighing heavily on end-of-life stakeholders, and the further increase of recycling levels for 2015, it is important to understand “when” and “if” manual dismantling activities become economically viable within a dramatically changing vehicle recovery industry. This paper describes a method of costing the dismantling of specific makes and models of vehicle due for retirement in 2015, and discusses the economic implications of such practice and possible strategic directions for pre-fragmentation vehicle recovery.  相似文献   

12.
A significant amount of mineral aggregates are used in constructing, rehabilitating and maintaining roads. As local (nearby) quarries get exhausted, aggregates need to be hauled from sources that are at ever-greater distances. Hence, over time the cost of trucking as well as the amount of emissions generated by trucking increases with a decrease of local natural aggregate stocks. The objectives of this study are to construct and utilize a system dynamics model of the depletion of a stock of natural aggregates due to pavement construction and maintenance, and determine the effect of using local and nonlocal aggregates, recycling and project cancellation (slowing growth) on the paving of roads. Long-term simulations are carried out with available aggregate stock, trucking distance and cost data. The quality of roads and a sustainability score, based on engineering, economic and environmental factors (emissions) are evaluated for different scenarios. An optimal combination of the use of local and nonlocal recycled aggregates, recycling and project cancellation is recommended. The proposed system dynamics model could be utilized by agencies to plan for the proper utilization of aggregate resources for road development and maintenance/rehabilitation projects.  相似文献   

13.
The establishment of an eco-industrial park (EIP) provides opportunity for individual plants to cooperate with each other in order to utilize resources efficiently and thus reduce waste. The goal of an EIP is to “close the loop” through recycling and reuse of material and energy streams. Studies show with current freshwater consumption trends there would be water stress aggravated by global warming in the near future. This paper presents a model to design an EIP water reuse network that considers overall system sustainability as measured with emergy, as well as cost saving desired by individual plants. Case studies from literature are then solved to illustrate the advantage of this method in decision making. The illustrative examples show how the model achieves a compromise among the potentially conflicting fuzzy goals of the various EIP stakeholders.  相似文献   

14.
To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective).  相似文献   

15.
Aggregate is used in road and building construction to provide bulk, strength, support, and wear resistance. Reclaimed asphalt pavement (RAP) and reclaimed Portland cement concrete (RPCC) are abundant and available sources of recycled aggregate. In this paper, current aggregate production operations in Virginia, Maryland, and the District of Columbia are used to develop spatial association models for the recycled aggregate industry with regional transportation network and population density features.The cost of construction aggregate to the end user is strongly influenced by the cost of transporting processed aggregate from the production site to the construction site. More than 60% of operations recycling aggregate in the mid-Atlantic study area are located within 4.8 km (3 miles) of an interstate highway. Transportation corridors provide both sites of likely road construction where aggregate is used and an efficient means to move both materials and on-site processing equipment back and forth from various work sites to the recycling operations.Urban and developing areas provide a high market demand for aggregate and a ready source of construction debris that may be processed into recycled aggregate. Most aggregate recycling operators in the study area are sited in counties with population densities exceeding 77 people/km2 (200 people/mile2). No aggregate recycling operations are sited in counties with less than 19 people/km2 (50 people/mile2), reflecting the lack of sufficient long-term sources of construction debris to be used as an aggregate source, as well as the lack of a sufficient market demand for aggregate in most rural areas to locate a recycling operation there or justify the required investment in the equipment to process and produce recycled aggregate.Weights of evidence analyses (WofE), measuring correlation on an area-normalized basis, and weighted logistic regression (WLR), are used to model the distribution of RAP and RPCC operations relative to transportation network and population distribution data. The models can be used on a regional scale to quickly map the relative site suitability for a RAP or RPCC aggregate recycling operation in a particular area based on transportation network and population parameters. The results can be used to identify general areas to be further evaluated on a site-specific basis using more detailed marketplace information. As transportation or population features change due to planning or actual development, the models can be easily revised to reflect these changes.  相似文献   

16.
Goal of the work is to present a simplified methodology to optimize an integrated solid waste management system. The methodology performs two optimizations, namely: (i) minimization of the total cost of the MSW system and (ii) minimization of the equivalent carbon dioxide emissions (CO2e) generated by the whole system. The methodology is modeled via non-linear mathematical equations, uses 32 decision variables and does not require complex LCA databases. The proposed model optimally allocates eight MSW components (paper, cardboard, plastics, metals, glass, food wastes, yard wastes and other wastes) to four MSW management technologies (incineration, composting, anaerobic digestion, and landfilling) after source separation of recyclables has taken place. The Region of East-Macedonia and Thrace in Greece was selected as a case study. Results showed that there is a trade off between cost and CO2e emissions. Incineration and composting were favored as the principal treatment technologies, while landfilling was always the least desirable management technology under both objective functions. The recycling participation rate significantly affected all optimum scenarios.  相似文献   

17.
Life cycle inventory (LCI) is becoming more widely used as a tool to evaluate the resource and energy use and the environmental releases associated with various products. The methodology for handling different recycling scenarios is also becoming increasingly important. Several different methods exist for handling recycling in an LCI. The method described in this paper uses mathematical models to show that the same basic equations can be used to handle a variety of recycling options for multi-product systems.  相似文献   

18.
Whether to recycle the recyclable fraction in the MSW (municipal solid waste) or to incinerate it for energy recovery is a debating issue. In this paper we present a simple criterion to judge what type of waste components should be recycled or incinerated with energy recovery. According to the R1 formula presented by the waste framework directive (Directive 2008/98/EC of the European Parliament), this paper calculates the energy performances of MSW waste-to-energy plants currently operated in Taiwan firstly. By using the assumed value of energy recovery efficiency and carbon emission costs, we compare the treatment methods between recycling (material recovery) and energy recovery by the cost and benefit analysis, and examine the suitability of recycling for waste fractions of paper, food waste, PET, PVC, and plastic bags/films under a variety of scenarios. The results show that food waste is more appropriate to be treated by recycling while plastic bags/films are suggested to be incinerated with energy recovery.  相似文献   

19.
The assessment of the impact of climate change depends not only on quantitative changes in precipitation but also system characteristics that can be changed and enhanced. This study investigated the effect of building the shared network of a rainwater harvesting system as an adaptation to climate change scenarios. The performance of a rain barrel network under three climate change scenarios and three global circulation models (GCM) is examined. A sample community composed of four prospective users with individual storage is tested with various forms of shared connections. Most importantly, the results show that the benefit from shared rain barrels greatly increases under the climate change conditions compared with the historical rainfall data. Especially, for high reliabilities, the results indicate that the benefit of a rain barrel network increases under future climate change scenarios, whereas it does not show apparent improvement for low reliabilities. However, the performance of a rain barrel network is highly dependent on location and climate change scenarios. In contrast, the GCM does not considerably affect the performance of the shared network. The results of this study highlight the needs to establish sharing networks of rainwater harvesting systems under the climate change conditions, which would significantly increase the benefit of the entire community.  相似文献   

20.
What municipal recycling rate is socially optimal? One credible answer would consider the recycling rate that minimizes the overall social costs of managing municipal waste. Such social costs are comprised of all budgetary costs and revenues associated with operating municipal waste and recycling programs, all costs to recycling households associated with preparing and storing recyclable materials for collection, all external disposal costs associated with waste disposed at landfills or incinerators, and all external benefits associated with the provision of recycled materials that foster environmentally efficient production processes. This paper discusses how to estimate these four components of social cost to then estimate the optimal recycling rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号