首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Habitat loss, fragmentation, and degradation have pervasive detrimental effects on tropical forest biodiversity, but the role of the surrounding land use (i.e., matrix) in determining the severity of these impacts remains poorly understood. We surveyed bird species across an interior-edge-matrix gradient to assess the effects of matrix type on biodiversity at 49 different sites with varying levels of landscape fragmentation in the Brazilian Atlantic Forest—a highly threatened biodiversity hotspot. Both area and edge effects were more pronounced in forest patches bordering pasture matrix, whereas patches bordering Eucalyptus plantation maintained compositionally similar bird communities between the edge and the interior and exhibited reduced effects of patch size. These results suggest the type of matrix in which forest fragments are situated can explain a substantial amount of the widely reported variability in biodiversity responses to forest loss and fragmentation.  相似文献   

2.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

3.
Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant‐free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long‐term conservation will require land‐use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging.  相似文献   

4.
Abstract:  Small-scale, local disturbance of tropical forests, for example from selective logging, is widespread, but its effects on biodiversity and ecosystem function have rarely been studied. In 3 East African tropical rainforests, we investigated the effect of different levels of local forest disturbance on the frugivore community and on tree visitation and fruit removal rates of the small-seeded tree Celtis durandii. We quantified birds and primates in little and heavily disturbed sites, distinguishing between forest specialists, forest generalists, and forest visitors. We quantified frugivorous tree visitors and seed removal rates of C. durandii trees in the same sites. Forest disturbance reduced the species richness and density of the frugivore community and of forest specialists. Frugivorous species and individuals visiting the study trees were reduced significantly, which led to a marginally significant decline in fruit removal by all frugivores and a significant reduction in removal by forest specialists. Reduction in fruit removal by forest specialists was not compensated for by increases in removal by forest generalists or visitors. Results did not differ among the 3 rainforests, which suggests they were consistent at a regional scale. So local forest disturbance led to a loss of frugivores and their seed removal services. This suggests that large-seeded tree species and trees with small fruits are losing seed dispersers. Thus, local forest disturbance appears to have a more general negative impact on frugivores and their seed dispersal services than anticipated previously.  相似文献   

5.
Loss of natural forests by forest clearcutting has been identified as a critical conservation challenge worldwide. This study addressed forest fragmentation and loss in the context of the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status, and ecosystem services. Through retrospective analysis of satellite images, we assessed a 50- to 60-year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. This period broadly covers the whole forest clearcutting period; thus, our approach and results can be applied to comprehensive impact assessment of industrial forest management. The entire study region covers close to 46,000 km2 of forest-dominated landscape in a late phase of transition from a natural or near-natural to a land-use modified state. We found a substantial loss of intact forest, in particular of large, contiguous areas, a spatial polarization of remaining forest on regional scale where the inland has been more severely affected than the mountain and coastal zones, and a pronounced impact on interior forest core areas. Salient results were a decrease in area of the largest intact forest patch from 225,853 to 68,714 ha in the mountain zone and from 257,715 to 38,668 ha in the foothills zone, a decrease from 75% to 38% intact forest in the inland zones, a decrease in largest patch core area (assessed by considering 100-m patch edge disturbance) from 6114 to 351 ha in the coastal zone, and a geographic imbalance in protected forest with an evident predominance in the mountain zone. These results demonstrate profound disturbance of configuration of the natural forest landscape and disrupted connectivity, which challenges the establishment of functional green infrastructure. Our approach supports the identification of forests for expanded protection and conservation-oriented forest landscape restoration.  相似文献   

6.
Abstract: Forest fragmentation leads to a dramatic increase in forest edge, and these edges may function as traps and concentrators for wind-borne nutrients and pollutants. We assessed the influence of forest edges on atmospheric deposition and subsequent inputs to the forest floor in deciduous-forest fragments in the eastern United States. To quantify these inputs, we collected throughfall—water that has passed through the forest canopy—from edge and interior zones of forests adjacent to open fields. During the 1995 growing season, atmospheric input (wet and dry deposition) of sulfur to forest edge zones was elevated compared with input to forest interiors. Throughfall fluxes of dissolved inorganic nitrogen and calcium were also greater at edges than interiors. The mean edge increases ranged from 17% to 56% for the nutrients and pollutants we measured. When we manipulated the structure of forest edges by removing all vegetation below half the canopy height, throughfall flux in the edge zone declined sharply and was less than that of the respective interior zone. Changing the vegetation structure of the edge also shifted the zone of highest throughfall flux farther into the interior of the forest. Our data suggest that forest edges can function both as significant traps for airborne nutrients and pollutants from adjoining agricultural or urban landscapes and effective concentrators of below-canopy chemical fluxes. These enhanced fluxes may have cascading effects on soil-nutrient cycling, microbial activity, seedling dominance, and other ecological processes near forest edges.  相似文献   

7.
Biodiversity declines and ecosystem decay follow forest fragmentation; initially, abundant species may become rare or be extirpated. Underlying mechanisms behind delayed extirpation of certain species following forest fragmentation are unknown. Species declines may be attributed to an inadequate number of breeding adults required to replace the population or decreased juvenile survival rate due to reduced recruitment or increased nest predation pressures. We used 10 years of avian banding data, 5 years before and 4 years after fragment isolation, from the Biological Dynamics of Forest Fragments Project, carried out near Manaus, Brazil, to investigate the breeding activity hypothesis that there is less breeding activity and fewer young after relative to before fragment isolation. We compared the capture rates of active breeding and young birds in 3 forest types (primary forest, fragment before isolation, and fragment after isolation) and the proportion of active breeding and young birds with all birds in each unique fragment type before and after isolation. We grouped all bird species by diet (insectivore or frugivore) and nesting strategy (open cup, cavity, or enclosed) to allow further comparisons among forest types. We found support for the breeding activity hypothesis in insectivorous and frugivorous birds (effect sizes 0.45 and 0.53, respectively) and in birds with open-cup and enclosed nesting strategies (effect sizes 0.56 and 0.44, respectively) such that on average there were more breeding birds in fragments before isolation relative to after isolation. A larger proportion of birds in the community were actively breeding before fragment isolation (72%) than after fragment isolation (11%). Unexpectedly, there was no significant decrease in the number of young birds after fragment isolation, although sample sizes for young were small (n = 43). This may have been due to sustained immigration of young birds to fragments after isolation. Together, our results provide some of the strongest evidence to date that avian breeding activity decreases in response to fragment isolation, which could be a fundamental mechanism contributing to ecosystem decay.  相似文献   

8.
Otto SB  Berlow EL  Rank NE  Smiley J  Brose U 《Ecology》2008,89(1):134-144
Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.  相似文献   

9.
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable‐isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic‐niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic‐niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic‐niche widths in degraded forest. Species with narrow trophic‐niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species’ trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. Flexibilidad Trófica y la Persistencia de Aves de Sotobosque en un Bosque Lluvioso Talado Intensivamente  相似文献   

10.
The Potential for Species Conservation in Tropical Secondary Forests   总被引:3,自引:0,他引:3  
Abstract: In the wake of widespread loss of old‐growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches, spatial and temporal landscape dynamics influence the establishment, species composition, and persistence of secondary forests. Prospects for conservation of old‐growth species in secondary forests are maximized in regions where the ratio of secondary to old‐growth forest area is relatively low, older secondary forests have persisted, anthropogenic disturbance after abandonment is relatively low, seed‐dispersing fauna are present, and old‐growth forests are close to abandoned sites. The conservation value of a secondary forest is expected to increase over time, as species arriving from remaining old‐growth forest patches accumulate. Many studies are poorly replicated, which limits robust assessments of the number and abundance of old‐growth species present in secondary forests. Older secondary forests are not often studied and few long‐term studies are conducted in secondary forests. Available data indicate that both old‐growth and second‐growth forests are important to the persistence of forest species in tropical, human‐modified landscapes.  相似文献   

11.
Edge Effects on the Understory Bird Community in a Logged Forest in Uganda   总被引:3,自引:0,他引:3  
Abstract: Understanding how the fauna of logged tropical rainforests responds to fragmentation and the creation of edges is vital to ensure conservation of biodiversity. We studied the composition of the understory bird community from the edge of a 15-ha clearing toward the interior of the forest in a part of Budongo Forest Reserve, Uganda, that was selectively logged about 45 years ago. Mist netting was conducted along five transects from the edge and 500 m into the interior. The total number of individuals captured did not change with distance from the edge, but there was a significant increase in the number of species. We sampled fewer, but more common species near the edge, whereas the interior of the forest had more, and less common species. Guild composition also changed with distance from the edge. Frugivore-insectivores and nectarivores were most common close to the edge. Among insectivores, ground foragers, bark-gleaners, and leaf-gleaners were most common in the interior of the forest, whereas sallying insectivores favored the edge. Graminivores were unaffected by the edge. Analysis of common species showed that Ispidina picta , Andropadus curvirostris , A. latirostris , Camaroptera brachyura , Terpsiphone rufiventer , and Nectarinia olivacea were associated with the edge, but no species showed significant avoidance of the edge. This finding may be explained by the generally low sample sizes of interior species. Our results show that even bird communities in logged forests respond to edges. Estimates of edge effects suggested that changes in bird densities may have occurred several hundred meters from the edge. In conclusion, logged forests provide habitat for bird species avoiding forest edges, and this should be considered in the management of such forests for conservation.  相似文献   

12.
In extreme environments, temperature and precipitation are often the main forces responsible for structuring ecological communities and species distributions. The role of biotic interactions is typically thought to be minimal. By clustering around rare and isolated features, like surface water, however, effects of herbivory by desert-dwelling wildlife can be amplified. Understanding how species interact in these environments is critical to safeguarding vulnerable or data-deficient species. We examined whether African elephants (Loxodonta africana), black rhinoceros (Diceros bicornis), and southern giraffe (Giraffa giraffa) modulate insectivorous bat communities around permanent waterholes in the Namib Desert. We estimated megaherbivore use of sites based on dung transects, summarized vegetation productivity from satellite measurements of the normalized difference vegetation index, and surveyed local bat communities acoustically. We used structural equation models to identify relationships among megaherbivores and bat species richness and dry- (November 2016–January 2017) and wet- (February–May 2017) season bat activity. Site-level megaherbivore use in the dry season was positively associated with bat activity—particularly that of open-air foragers—and species richness through indirect pathways. When resources were more abundant (wet season), however, these relationships were weakened. Our results indicate that biotic interactions contribute to species distributions in desert areas and suggest the conservation of megaherbivores in this ecosystem may indirectly benefit insectivorous bat abundance and diversity. Given that how misunderstood and understudied most bats are relative to other mammals, such findings suggest that managers pursue short-term solutions (e.g., community game guard programs, water-point protection near human settlements, and ecotourism) to indirectly promote bat conservation and that research includes megaherbivores’ effects on biodiversity at other trophic levels.  相似文献   

13.
Edge Effects on Lizards and Frogs in Tropical Forest Fragments   总被引:4,自引:1,他引:3  
Abstract: We investigated whether forest-pasture edges affect the distribution of an assemblage of small vertebrate ectotherms in a consistent and predictable manner. We describe the abundance and distribution of two species of anoline lizards (   Norops ) and five species of leaf-litter frogs (   Eleutherodactylus ) along the edges and in the interiors of nine forest fragments near Las Cruces, Costa Rica. Over 4 months, we surveyed 44 pairs of plots by visual encounter. In each pair of plots, one was immediately adjacent to the pasture and the second was within the forest "interior." Both plots of a pair were searched simultaneously. This block design controlled for the effects of weather, topography, and searcher ability. The distribution of all species was highly variable with respect to edges. Only two species of frogs, Eleutherodactylus podiciferus and E. cruentus , were significantly more abundant in interior plots than in edge plots, although not consistently so. Both species of Norops lizards were more abundant along forest edges during the dry season. Both Norops species and several Eleutherodactylus species, however, appeared to become more abundant in the forest interior after the onset of the wet season, suggesting a seasonal edge effect. In Norops polylepis , the most abundant anole, rates of ectoparasitism were lower along edges than in forest interiors. The magnitude of the edge effect on any one species was not influenced by the size of fragments or by the distance of the interior plot from the nearest edge. We believe that edge effects should not be defined by the distance to which they are detected. Rather, they should be viewed as highly dynamic in space and time; taxa appear to respond to different components of edge effects according to their particular biological requirements.  相似文献   

14.
Post DM  Palkovacs EP  Schielke EG  Dodson SI 《Ecology》2008,89(7):2019-2032
Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.  相似文献   

15.
Abstract: Trophic cascades triggered by fishing have profound implications for marine ecosystems and the socioeconomic systems that depend on them. With the number of reported cases quickly growing, key features and commonalities have emerged. Fishery‐induced trophic cascades often display differential response times and nonlinear trajectories among trophic levels and can be accompanied by shifts in alternative states. Furthermore, their magnitude appears to be context dependent, varying as a function of species diversity, regional oceanography, local physical disturbance, habitat complexity, and the nature of the fishery itself. To conserve and manage exploited marine ecosystems, there is a pressing need for an improved understanding of the conditions that promote or inhibit the cascading consequences of fishing. Future research should investigate how the trophic effects of fishing interact with other human disturbances, identify strongly interacting species and ecosystem features that confer resilience to exploitation, determine ranges of predator depletion that elicit trophic cascades, pinpoint antecedents that signal ecosystem state shifts, and quantify variation in trophic rates across oceanographic conditions. This information will advance predictive models designed to forecast the trophic effects of fishing and will allow managers to better anticipate and avoid fishery‐induced trophic cascades.  相似文献   

16.
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.  相似文献   

17.
There is a growing need to assess and monitor forest cover and its conservation status over global scales to determine human impact on ecosystems and to develop sustainability plans. Recent approaches to measure regional and global forest status and dynamics are based on remotely sensed estimates of tree cover. We argue that tree cover should not be used to assess the area of forest ecosystems because tree cover is an undefined subset of forest cover. For example, tree cover can indicate a positive trend even in the presence of deforestation, as in the case of plantations. We believe a global map of forest naturalness that accounts for the bio-ecological integrity of forest ecosystems, for example, intact forests, old-growth forest patches, rewilding forests (exploited forest landscapes undergoing long-term natural succession), and managed forests is needed for global forest assessment.  相似文献   

18.
Compared with forest interiors, forest edges typically have a different plant species composition and community structure, a phenomenon known as "edge effect." Edge effects make the functional interior area of a forest smaller than its actual area. The objective of this study was to estimate how far the effects of agriculturally maintained edges penetrate the mixed hardwood forests of the Roanoke River Basin, North Carolina. I determined percentage cover for all vascular plant species in 10-by-100-meter belt transects on north-facing or south-facing edges of four relatively undisturbed forests. Changes in the percentage cover of individual species, the relative cover of exotic species, and species richness all indicated that edge effects penetrate deeper on south-facing edges (to 60 meters) than on north-facing edges (to 20 meters). Analyses of species responses to the edge showed a number of species to be edge oriented, but no species was found to be interior oriented. The results of multivariate analyses (ordination and cluster analysis) suggested that edge effects could be detected to 50 meters on south-facing edges and 10–30 meters on north-facing edges. These results allow us to better understand the difference between a forest's actual area and its functional interior area.  相似文献   

19.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

20.
Abstract: Although enhancing reserve shape has been suggested as an alternative to enlarging nature reserves, the importance of reserve shape relative to reserve area remains unclear. Here we examined the relative importance of area and shape of forest patches to species richness, species composition, and species abundance (abundance of each species) for 3 taxa (33 birds, 41 butterflies, and 91 forest‐floor plants) in a fragmented landscape in central Hokkaido, northern Japan. We grouped the species according to their potential edge responses (interior‐, neutral‐, and edge‐species groups for birds and forest‐floor plants, woodland‐ and open‐land‐species groups for butterflies) and analyzed them separately. We used a shape index that was independent of area as an index of shape circularization. Hierarchical partitioning and variation partitioning revealed that patch area was generally more important than patch shape for species richness and species composition of birds and butterflies. For forest‐floor plants, effects of patch area and shape were small, whereas effects of local forest structure were large. Patch area and circularization generally increased abundances of interior species of birds and forest‐floor plants and woodland species of butterflies. Nevertheless, only patch circularization increased abundances of 1 woodland species of butterfly and 2 and 6 interior species of birds and forest‐floor plants, respectively. We did not find any significant interaction effects between patch area and shape. Our results suggest that although reserves generally should be large and circular, there is a trade‐off between patch area and shape, which should be taken into consideration when managing reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号