首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
This article reports the complete mineralization of atrazine. Atrazine has been the most widely used s-triazine herbicide. Atrazine occurs in natural waters and presents a potential danger for public health because atrazine is considered as an endocrine disruptor. The use of chemical, photochemical and photocatalytic advanced oxidation processes (AOPs) to decontaminate waters containing atrazine only allowed its conversion into the cyanuric acid as ultimate end products, since it cannot be completely degraded by hydroxyl radicals (OH) produced by these techniques. The same behavior was previously reported for anodic oxidation and electro-Fenton with Pt anode, although better performances were found using boron-doped diamond (BDD) anode but without explaining the role of generated OH. Here, the oxidative action of these radicals in such electrochemical AOPs has been clarified by studying the mineralization process and decay kinetics of atrazine and cyanuric acid in separated solutions by anodic oxidation with BDD and electro-Fenton with Pt or BDD anode using an undivided cell with a carbon-felt cathode under galvanostatic conditions. Results showed that electro-Fenton with BDD anode was the more powerful treatment to degrade both compounds. Almost total mineralization, 97% total organic carbon (COT) removal, of atrazine was only feasible by this method with a faster removal of its oxidation intermediates by OH formed at the BDD surface than that formed in the bulk from Fenton reaction, although the latter process caused a more rapid decay of the herbicide. Cyanuric acid was much slowly mineralized mainly with OH produced at the BDD surface, and it was not degraded by electro-Fenton with Pt anode. These results highlight that electrochemical advanced oxidation processes (EAOPs) using a BDD anode are more powerful than the classical electro-Fenton process with Pt or PbO2 anodes.  相似文献   

2.
The photocatalytic oxidation of humic substances in aqueous solutions and natural waters with TiO2 attached to buoyant, hollow glass micro-spheres was studied. A maximum oxidation efficiency of 3.6 mg W–1 h–1 was achieved in neutral or alkaline media at a plane surface concentration of the catalyst attached to the micro-spheres of 25 g m–2. Proceeding by different mechanisms in acidic and alkaline media, the photocatalytic oxidation efficiency did not benefit from an excessive presence of hydroxyl radical promoters, hydrogen peroxide and alkali.  相似文献   

3.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

4.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

5.
This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Çan, Çanakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene–Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO4 2– (1200.2 mg L–1), Cl (121.7 mg L–1), HCO3 (32.5 mg L–1), Na+ (494 mg L–1), K+ (30.2 mg L–1), Ca2+ (102 mg L–1), Mg2+ (15.2 mg L–1), and SiO2 (65.22 mg L–1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO4 2– (575 mg L–1), Cl (193.2 mg L–1), HCO3 (98.5 mg L–1), Na+ (315 mg L–1), K+(7.248 mg L–1), Ca2+ (103 mg L–1), Mg2+ (0.274 mg L–1), and SiO2(43.20 mg L–1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na++K+)>rCa2+>rMg2+ and r(SO4 2–)>rCl>r(HCO3 ). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper.  相似文献   

6.
Previous epidemiological studies have shown that dental fluorosis is endemic in the lowland, dry zone of Sri Lanka, which is considered to be an area in which excessive quantities of fluorides are present in the drinking water supplies. It has been found that kaolinitic clay forms a suitable raw material in the defluoridation of water.It is shown that there is a noticeable effect of selenium and media pH on the reactions involved in the interaction of fluoride with clay. In this study, 1 mM fluoride solutions containing SeO 3 2– (selenite) concentrations of 0 mM, 0.1 mM, 0.5 mM and 1 mM were used in the reactions with kaolinitic clay. The effect of pH was monitored in the range 4 to 8. It was observed that fluoride adsorption was maximum at a pH of 5.6 without either SeO 3 2– or SeO 4 2– , the adsorption capacity being 15.2 mol F g–1 clay. However, when the SeO 3 2– concentration was increased up to 0.5 mM at this optimum pH, the adsorption capacity reduced to 12.8 mol F g–1 clay. Monitoring of the effect of SeO 4 2– and media pH on fluoride adsorption showed that when the SeO 4 2– concentration increases from zero to 0.1 mM, there is a reduction of fluoride adsorption capacity. However, when the SeO 4 2– concentration is further increased from 0.1 mM to 1.0 mM, there was an increase in the fluoride adsorption capacity, indicating a more consistent effect of SeO 3 2– on fluoride-kaolinitic clay interaction than SeO 4 2– .Fluoride concentrations in drinking water supplies have a marked effect on dental health and the geochemistry of selenium appears to play an important role in the geochemical mobility of fluoride ions.  相似文献   

7.
Degradation of diuron by the electro-Fenton process   总被引:2,自引:0,他引:2  
The degradation of the herbicide diuron has been undertaken by electrochemical advanced oxidation in aqueous solution. This process generates catalytically hydroxyl radicals that are strong oxidizing reagents for the oxidation of organic substances. Hydroxyl radicals degrade diuron in less than 10 min. Kinetic results evidence a pseudo-first-order degradation, with a rate constant of reaction between diuron and hydroxyl radicals of 4.8x109 M–1 s–1. Several degradation products were identified by chromatography-mass spectrometry (LC-MS). The mineralization degree of a 1.7x10–4 M diuron solution reached 93% at 1,000 coulombs.  相似文献   

8.
Rates of oxygen consumption were measured for embryos, larvae and juveniles of the seastar Mediaster aequalis for 76 days post-fertilization. The rate increased from 0.65 nmol O2 ind–1 h–1 at 6 h after fertilization to 2.8 nmol O2 ind–1 h–1 at day 35. Larvae became competent to metamorphose around day 35 post-fertilization and began to decrease their metabolic rate after this time. Metamorphosed juveniles consumed 0.74 nmol O2 ind–1 h–1. Eggs contained 138.6 µg lipid ind–1 and 12.1 µg protein ind–1. Lipid levels decreased in concentration throughout development while protein levels increased slightly. The lipid levels decreased by 88.5 µg from eggs to day 76 larvae, accounting for 3.5 J of energy. Total oxygen consumption to this point was 3.74 µmol O2 ind–1, accounting for 1.84 J. The energetic demand up to day 76 was met completely through the use of lipid reserves. Metamorphosed juveniles expended 0.5 J more than larvae at the same age. Tubes of the polychaete Phyllochaetopterus prolifica were able to induce metamorphosis in M. aequalis larvae and a non-polar extract of these tubes also triggered metamorphosis. Larvae that are delayed to metamorphose can sustain their metabolic rate with lipid reserves for a limited, yet undetermined, period.Communicated by P.W. Sammarco, Chauvin  相似文献   

9.
Acute toxicity of ammonia was determined for cultured larval, postlarval, and wild adult lobsters (Homarus americanus) in 1988. Ammonia tolerance was found to increase with ontogenetic development. Based on 96-h LC50 values of 58 mg l–1 NH4 + + NH3 l–1 seawater (0.72 mg NH3 l–1) for Stage I larvae, 87 mg NH4 + + NH3 l–1 (1.7 mg NH3 l–1) for Stage II larvae, 125 mg NH4 + + NH3 l–1 (2.13 mg NH3) for Stage III larvae, 144 mg NH4 + + NH3 l–1 (2.36 mg NH3 l–1) for Stage IV postlarvae, 377 mg NH4 + + NH3 l–1 (5.12 mg NH3 l–1) for adult lobsters at 5°C and 219 mg NH4 + + NH3 l–1 (3.25 mg NH3 l–1) for adult lobsters at 20°C, recommendations for safe levels of total ammonia and un-ionized ammonia were calculated using an application factor of 0.1. Effects of ammonia on osmoregulatory capacity were studied on postlarvae and adults. Ability of postlarvae and adults to hyper-regulate in low-salinity media decreased after exposure to ammonia. In postlarval lobsters, osmoregulatory capacity was significantly affected in ammonia concentrations exceeding 32 mg l–1. Osmoregulatory capacity in adult lobsters (5 and 20°C) was affected at 150 mg l–1. In postlarval lobsters, a minimum exposure time of 12 h was required to impair osmoregulatory capacity. The decrease in hemolymph osmotic pressure was caused by lower hemolymph sodium concentrations. The presence of ammonia in the external medium could markedly affect the Na+/NH4 + transport mechanism by permanently, temporarily, or partially impairing the transport sites for sodium.  相似文献   

10.
A long-term field and lysimeter experiment under different amount of fertilizer-N application was conducted to explore the optimal N application rates for a high productive rice–wheat system and less N leaching loss in the Yangtse Delta region. In this region excessive applications of N fertilizer for the rice–wheat production has resulted in reduced N recovery rates and environment pollution. Initial results of the field experiments showed that the optimal N application rate increased with the yield. On the two major paddy soils (Hydromorphic paddy soil and Gleyed paddy soil) of the region, the optimal N application rate was 225–270 kg N hm–2 for rice and 180–225 kg N hm–2 for wheat, separately. This has resulted in the highest number of effective ears and Spikelets per unit area, and hence high yield. Nitrogen leaching in the form of NO 3 -N occurs mainly in the wheat-growing season and in the ponding and seedling periods of the paddy field. Its concentration in the leachate increased with the N application rate in the lysimeter experiment. When the application rate reached 225 kg N hm–2, the concentration rose to 5.4–21.3 mgN l–1 in the leachate during the wheat-growing season. About 60% of the leachate samples determined contained NO 3 -N beyond the criterion (NO 3 -N 10 mg l–1) for N pollution. In the field experiment, when the N application rate was in the range of 270–315 kg hm–2, the NO 3 -N concentration in the leachate during the wheat-growing season ranged from 1.9 to 11.0 mg l–1. About 20% of the leachate samples reached close to, and 10% exceeded, the criterion for N pollution. Long-term accumulation of NO 3 -N from leaching will no doubt constitute a potential risk of N contamination of the groundwater in the Yangtse Delta Region.  相似文献   

11.
In the marine green alga Ulva rigida C. Agardh, nitrate reductase (NR) is synergetically induced by blue light and nitrate. The present study examines the effect of blue light and a large NO 3 pulse (0.3 mM) on relevant variables of NO 3 -assimilation such as NO 3 -uptake, intracellular NO 3 -storage, NR activity, in vivo NO 3 -reduction rate and NO 2 and NH 4 + -accumulation. Nitrate uptake started immediately upon addition of NO 3 , suggesting the presence of a constitutive carrier, however in the first 1.5 to 2 h, periods of net NO 3 efflux were frequent. After this time, NO 3 -uptake and intracellular NO 3 -accumulation proceeded linearly with time, suggesting the existence of a different NO 3 -uptake mechanism, which seems to be inducible. Our results indicate that in vivo NO 3 -reduction is not exclusively dependent on the potential NR activity. In U. rigida, during the first 2 h after a NO 3 pulse (300 M) there were clear indications that the induction state of the NO 3 -carrier limits the reduction rate of NO 3 . Once the induction of the NO 3 -transporter had been completed (1.5 to 2 h), the NO 3 -assimilation pathway reached a steady state, NO 3 -uptake rate, NO 3 -reduction rate and NO 2 and NH 4 + -accumulation being linear with time. Since the reduction of NO 3 leads mainly to the accumulation of NH 4 + , we conclude that, after the NO 3 -reduction itself, NH 4 + -fixation into carbon skeletons is the limiting step in the assimilation of NO 3 by U. rigida under blue light.  相似文献   

12.
In recent years, China has conducted considerable research focusing on the emission and effects of sulphur (S) on human health and ecosystems. By contrast, there has been little emphasis on anthropogenic nitrogen (N) so far, even though studies conducted abroad indicate that long-range atmospheric transport of N and ecological effects (e.g. acidification of soil and water) may be significant. The Sino-Norwegian project IMPACTS, launched in 1999, has established monitoring sites at five forest ecosystems in the southern part of PR China to collect comprehensive data on air quality, acidification status and ecological effects. Here we present initial results about N dynamics at two of the IMPACTS sites located near Chongqing and Changsha, including estimation of atmospheric deposition fluxes of NOx and NHx and soil N transformations. Nitrogen deposition is high at both sites when compared with values from Europe and North America (25–38 kg ha–1 yr–1). About 70% of the deposited N comes as NH4, probably derived from agriculture. Leaching of N from soils is high and nearly all as NO3 –1. Transformation of N to NO3 –1 in soils results in acidification rates that are high compared to rates found elsewhere. Despite considerable leaching of NO3 –1 from the root zone of the soils, little NO3 –1 appears in streamwater. This indicates that N retention or denitrification, both causing acid neutralization, may be important and probably occur in the groundwater and groundwater discharge zones. The soil flux density of mineral N, which is the sum of N deposition and N mineralization, and which is dominated by the N mineralization flux, may be a good indicator for leaching of NO3 –1 in soils. However, this indicator seems site specific probably due to differences in land-use history and current N requirement.  相似文献   

13.
Consumption of unusually high concentrations of F in groundwaters of the Maria area in the Gaspé peninsula of Quebec have resulted in symptoms of skeletal fluorosis in two members of the population. One of these individuals consumed approximately 50 mg of fluoride per day over a 6 year period before being hospitalized and later diagnosed with skeletal fluorosis. It is estimated that, until this case came to light, approximately 15–20% of the rural population (total approximately 1,600) in the area were consuming groundwaters with F levels between 5 and 28 mg L–1 for at least 6 years. The high concentrations of F in well waters of the Maria area occur only in wells completed in Carboniferous sandstone-siltstone-conglomerate sediments that underlie a thick blanket of alluvial-colluvial-glacial overburden. These fluoriferous groundwaters exhibit high Na and HCO3 contents and low Ca and Mg concentrations compared to those associated with the overburden sediments. The high F levels greatly increase the risk for fluorotic diseases such as skeletal fluorosis and skeletal radiculomyopathy. Wells completed in overburden, although having suboptimal F levels are safer for the health of individuals in this region. Effective regulations for well drilling need to be formulated for regions underlain by Carboniferous formations in the Maritime provinces of Canada. In some regions, high F levels (10–25 mg L–1) in groundwaters will seriously affect how, and to what extent, groundwater supplies can be developed for domestic use.To whom correspondence should be addressed.  相似文献   

14.
Automatic potentiometric determination of dissolved oxygen   总被引:2,自引:0,他引:2  
Commercially available automatic titration systems were tested in 1988 for potentiometric titration of liberated iodine by the Winkler method of oxygen determination. The potentiometric equivalence point was also compared to the manual starch end point. Finally the automatic method was used in order to estimate belowhalocline respiration in the Kattegat, Sweden. Standard deviations of 0.007 ml O2 l–1 or 0.1 to 0.3% coefficients of variation (% standard deviation of the mean) were achieved when titrating 25 ml from replicate 60-ml oxygen bottles using the automatic method, or 50 ml manually. The precision for replicate titrations of 50-ml aliquots of 0.001N KIO3 was <0.05% (0.002 ml 0.01N Na2S2O3) for the automatic method. Titration time for 25-ml aliquots was 2 to 4 min, somewhat longer than for manual titrations (1 to 1.5 min). However, during titration the operator is free to perform other tasks. It is not possible to use automatic sample changers, due to rapid iodine volatilization. The equipment can be handled by relatively unskilled analysts and is suitable for use on board research vessels or in field stations [weight for a MettlerTM titrator (Mettler Instrumente AG, Greifensee, Switzerland) <10 kg, volume <0.1 m3]. Below-halocline oxygen consumption in the SE Kattegat ranged from 0 to 6 ml O2 m–3 h–1 (mean values for September and October 1988=1.69 and 0.66 ml O2 m–3 h–1, respectively, with 95% confidence limits of ca. ±0.6 ml O2 m–3 h–1).  相似文献   

15.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

17.
The control mechanisms within the pelagic microbial food web of the oligotrophic Gulf of Aqaba and the northern Red Sea were investigated in the spring of 1999. Nutrient conditions and potential grazer impact were manipulated in a series of dilution experiments. Ambient nutrient concentrations and autotrophic biomass were very low (0.23–1.21 µmol NO3 l–1, 0.06–0.98 µmol NH4 l–1, 1.08–1.17 µmol Si l–1, 0.08–0.12 µmol P l–1, 0.15–0.36 µg chlorophyll a l–1). The planktonic community was characterized by low abundances [3.0–5.5×105 heterotrophic bacteria ml–1, 0.58–7.2×103 ultraphytoplankton <8 µm ml–1 (small eukaryotic photoautotrophs and Prochlorococcus sp., excluding Synechococcus sp.), 0.45–4.4×104 Synechococcus sp. ml–1, 0.32–1.2×103 heterotrophic nanoflagellates ml–1, 1.3–3.8×103 phytoplankton >8 µm l–1, 0.93–5.4×102 microzooplankton l–1] and dominated by small forms (0.2–8 µm). Dinoflagellates and oligotrichous ciliates were the most common groups in initial samples among the phytoplankton >8 µm and microzooplankton, respectively. Results show that bottom-up and top-down control mechanisms operated simultaneously. Small organisms were vulnerable to grazing, with maximum grazing rates of 1.1 day–1 on heterotrophic bacteria and 1.3 day–1 on ultraphytoplankton. In contrast, algae >8 µm showed stronger signs of nutrient limitation, especially when the final assemblages were dominated by diatoms. Synechococcus sp. were not grazed and only showed moderate to no response to nutrient additions. The high spatial and temporal variation of our results indicates that the composition of the planktonic community determines the prevailing control mechanisms. It further implies that, at this transitional time of the year (onset of summer stratification), the populations fluctuate about an equilibrium between growth and grazing.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
The life-history of the crown-of thorns starfish (Acanthaster planci) includes a planktotrophic larva that is capable of feeding on particulate food. It has been proposed, however, that particulate food (e.g. microalgae) is scarce in tropical water columns relative to the nutritional requirements of the larvae of A. planci, and that periodic shortages of food play an important role in the biology of this species. It has also been proposed that non-particulate sources of nutrition (e.g. dissolved organic matter, DOM) may fuel part of the nutritional requirements of the larval development of A. planci as well. The present study addresses the ability of A. planci larvae to take up several DOM species and compares rates of DOM uptake to the energy requirements of the larvae. Substrates transported in this study have been previously reported to be transported by larval asteroids from temperate and antarctic waters. Transport rates (per larval A. planci) increased steadily during larval development and some substrates had among the highest mass-specific transport rates ever reported for invertebrate larvae. Maximum transport rates (J max in) for alanine increased from 15.5 pmol larva–1 h–1 (13.2 pmol g–1 h–1) for gastrulas (J max in=38.7 pmol larva–1 h–1 or 47.4 pmol g–1 h–1) to 35.0 pmol larva–1 h–1 (13.1 pmol g–1 h–1) for early brachiolaria (J max in just prior to settlement=350.0 pmol larva–1 h–1 or 161.1 pmol g–1 h–1) at 1 M substrate concentrations. The instantaneous metabolic demand for substrates by gastrula, bipinnaria and brachiolaria stage larvae could be completely satisfied by alanine concentrations of 11, 1.6 and 0.8 M, respectively. Similar rates were measured in this study for the essential amino acid leucine, with rates increasing from 11.0 pmol larva–1 h–1 (or 9.4 pmol g–1 h–1) for gastrulas (J max in=110.5 pmol larva–1 h–1 or 94.4 pmol g–1 h–1) to 34.0 pmol larva–1 h–1 (or 13.0 pmol g–1 h–1) for late brachiolaria (J max in=288.9 pmol larva–1 h–1 or 110.3 pmol g–1 h–1) at 1 M substrate concentrations. The essential amino acid histidine was transported at lower rates (1.6 pmol g–1 h–1 at 1 M for late brachiolaria). Calculation of the energy contribution of the transported species revealed that larvae of A. planci can potentially satisfy 0.6, 18.7, 29.9 and 3.3% of their total energy requirements (instantaneous energy demand plus energy added to larvae as biomass) during embryonic and larval development from external concentrations of 1 M of glucose, alanine, leucine and histidine, respectively. These data demonstrate that a relatively minor component of the DOM pool in seawater (dissolved free amino acids, DFAA) can potentially provide significant amounts of energy for the growth and development of A. planci during larval development.  相似文献   

19.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

20.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号