首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考察了高铁酸钾对荧蒽和苯并[a]芘两种PAHs(多环芳烃)的降解反应过程,并应用偏振荧光光谱技术研究了荧蒽和苯并[a]芘两种PAHsr降解体系反应过程及其差别的识别,着重探讨了两种PAHs降解体系反应过程中的多种荧光波长模式与偏振度、三维荧光(EEM)与偏振三维荧光(PEEM)变化规律,最后由时间扫描荧光模式直接获得反应动力学拟合方程式.实验结果表明,各荧光识别模式一致地显示出高铁酸钾对荧蒽和苯并[a]芘的显著性降解作用及其对应的各荧光强度变化规律,即反应时间大于40 s后,两种PAHs(多环芳烃)的降解反应均不明显,且降解过程中均无新的荧光发色团结构生成.在高铁酸钾与荧蒽/苯并[a]芘摩尔比为1∶1、1∶4、4∶1的各降解体系的反应过程均符合一级反应动力学规律.荧蒽降解曲线的线性关系更高,苯并芘降解速率更快,多种荧光光谱相结合能够实现对PAHs的降解过程的便捷而有效的追踪,其揭示的结果与分子机理一致,即苯并[a]芘分子较荧蒽分子具有更大的π电子密度,因而在Fe(Ⅵ)夺电子过程中,更易于失去电子而被Fe(Ⅵ)氧化降解.  相似文献   

2.
戴竹青  戴巍  王明新  张文艺 《环境化学》2019,38(9):2108-2117
采用高铁酸钾降解水中典型嗅味物质异佛尔酮(IPO),考察了高铁酸钾投加量、溶液初始pH、IPO浓度、温度和反应时间等因素对IPO降解率的影响.采用响应面法进行多因素实验设计,利用二次多项式和逐步回归法拟合了IPO降解率、Fe~(2+)、Fe~(3+)与降解条件之间的关系,对降解条件进行了优化.采用GC-MS分析IPO的降解产物,探讨了IPO的降解机理.结果表明,高铁酸钾可以在1 min内迅速降解IPO. IPO降解率与高铁酸钾投加量正相关,与溶液初始pH负相关.在IPO初始浓度为6.0 mg·L~(-1)、溶液初始pH值为4.0、高铁酸钾投加量为0.9 g·L~(-1)、反应时间为5 min时,IPO降解率可达100%. Mn~(2+)、Mg~(2+)、NH~+_4和HCO~-_3等共存离子会抑制高铁酸钾对IPO的降解.高铁酸钾对IPO的氧化降解作用大于吸附、混凝的去除作用. GC-MS检测到的降解产物有4-羟基-4-甲基-2-戊酮、5-异丙基-5-甲基二氢-2(3H)-呋喃酮和4-甲基-4-戊烯-2-酮等物质,推测高铁酸钾对IPO的降解途径主要是氧化、加氢和脱碳等.  相似文献   

3.
DECP在TiO2上的热降解与光催化降解   总被引:1,自引:0,他引:1  
以沙林模拟剂--氯磷酸二乙酯(DECP)在P25 TiO2上的热降解反应和光催化降解反应,通过原位红外光谱(In situ IR)和气相色谱-质谱联用(GC-MS)等方法考察两种降解反应过程.证实DECP的热降解产物主要包括:DEHP(Diethyl hydroxyphosphonate),TEPP(Tetraethly pyrophosphate)和TEP(Triethyl phosphate)等.光催化反应过程中气相降解产物中除了有DEHP,TEP和TEPP以外,还发现了CO2,CO,H2O,HCl,甲烷,乙醇,乙醛和微量的DEP(Diethyl phosphite)等.DECP的降解机理,其光催化反应由脱氯,P-O-R键断裂,C-C键断裂和含磷基团的重组等复杂过程构成,最终转化为CO2,H2O和HCl等无机产物.  相似文献   

4.
研究了蒽和菲酶促降解的最佳反应条件及其动力学特性.结果表明,利用黄杆菌FCN2产生的胞内酶降解蒽、菲时的最佳pH为6,而且在弱酸性介质中胞内酶的活性较高;在30℃-35℃之间胞内酶能保持较好的降解活性,32℃时胞内酶活性最高.对蒽和菲酶促降解的米氏常数分别为3×10-4 mol·l-1和4×10-4 mol·l-1,相同实验条件下,对蒽降解的最大反应速率为2×10-6mol·l-1·min -1,对菲的最大反应速率为1×10-6mol·l-1·min -1.酶促降解蒽的反应级数接近于0.93,表观速率常数的对数lgk为-1.86,而降解菲的反应级数接近于0.76,表观速率常数的对数lgk为-2.05.  相似文献   

5.
高铁酸钾/254nm紫外光氧化降解水体中双酚A   总被引:2,自引:0,他引:2  
采用高铁酸钾/紫外光氧化降解双酚A水溶液.考察了高铁酸钾投加量、双酚A初始浓度、pH、降解时间等参数对双酚A的CODCr去除率的影响,通过正交实验得出了最佳降解参数,并对降解产物进行了紫外光谱分析.研究表明,高铁酸钾投加量为39 mg,pH值为11,双酚A浓度10 mg·L-1条件下降解30 min,双酚A最佳CODCr去除率为88.24%.  相似文献   

6.
来自深海环境的多环芳烃降解菌Celeribacter indicus P73~T能够高效降解菲,为揭示菲生物降解的分子机制,对其降解途径进行分析.通过GC-MS联用技术鉴定出菌株P73~T降解菲的2个重要的中间代谢产物,1-羟基-2-萘甲酸和1-萘酚.通过分析菌株P73~T全基因组,发现了菲降解基因簇(P73_0346-P73_0354),编码包括环羟基化双加氧酶、二氢二醇脱氢酶、环裂解双加氧酶、异构酶、水合醛缩酶等.通过验证环羟基化双加氧酶大亚基基因突变株ΔP73_0346::kan的菲降解能力,证实基因P73_0346编码了菲双加氧酶.依据代谢物检测、基因组分析和突变株功能验证结果,推测菌株P73~T降解菲经由菲C3,4-双加氧途径,更进一步地确定了参与此途径的菲双加氧酶等降解相关基因.本研究不仅揭示了菲降解的分子机制,也为菲污染的生物修复技术提供了理论依据.  相似文献   

7.
藉助GC-MS对乙腈/水体系中,360nm以上紫外光光催化杀虫剂哒螨酮产生的降解产物进行定性分析,共检测出15种中间产物,通过降解产物GC峰面积与时间的关系,半定量分析了其生成变化,得到典型的钟型曲线,基于以上分析提出了光催化降解哒螨酮的机理,另外,研究了不同pH值下,十六烷基三甲基溴化铵(CTAB)水溶液中哒螨酮的降解,结果表明,碱性条件下有利于光催化降解反应的进行。  相似文献   

8.
高铁酸钾氧化降解硝基苯水溶液   总被引:1,自引:0,他引:1  
采用高铁酸钾氧化降解硝基苯水溶液,研究表明,反应时间、pH值、高铁酸钾投加量、硝基苯水溶液浓度4个因素都会对硝基苯的降解效果产生影响.硝基苯水溶液浓度为55mg·l~(-1)时,初始pH=7-9,高铁酸钾投加量n_(k_2FeO_4):n_(C_6H_5NO_2)10:1,反应时间30min为最优反应条件,硝基苯去除率达到85%左右,COD_(Cr)去除率达到55%左右.通过对反应产物的分析,推测硝基苯首先被高铁酸钾氧化为对硝基苯酚,再进一步被氧化开环生成终产物.  相似文献   

9.
选用高岭石和蒙脱石为对象研究次生硅酸盐矿物对菲光降解过程产生的影响,并以石英砂作为对照.由于3种矿物的表面积、结构组成、表面电荷、阳离子交换能力不同,导致吸附性能不同,对菲的吸附能力呈现出蒙脱石高岭石石英砂.以发射波长为254 nm的紫外灯为光源,在3种矿物中进行菲光化学降解实验,探讨不同矿物中菲光化学降解行为的区别.紫外光辐射对3种矿物中菲的去除都符合一级反应动力学,24 h后菲的去除效果为:石英砂高岭石蒙脱石,与矿物吸附能力的大小有密切关系.与避光对照组相比,去除率整体上呈现出光照避光,表明紫外光辐射可以显著促进自然环境中菲的转化和降解.通过GC-MS检测到菲光降解的主要产物为邻苯二甲酸二(2-乙基己基)酯、烷烃、苯酚等,表明菲经过紫外光辐射会逐渐变成低毒或无毒物质,最终被矿化.  相似文献   

10.
为了解丁烯氟虫腈在液体中的降解趋势,采用液液萃取气相色谱-质谱(GC-MS)测定水中丁烯氟虫腈含量,研究丁烯氟虫腈在紫外光和太阳光照射下,在不同液体中的降解动态和降解产物.研究结果表明,在紫外光照射下,丁烯氟虫腈在水、0.01mol·L-1氯化钙溶液、甲醇、乙酸乙酯以及正己烷中的降解过程均符合一级反应动力学,27℃下丁...  相似文献   

11.
模拟饮用水消毒过程中高铁酸钾(Fe(Ⅵ))对吲哚美辛(IDM)的降解,考察了Fe(Ⅵ)投加量、IDM初始浓度、溶液pH值、温度等因素对IDM降解速率的影响.实验结果表明,Fe(Ⅵ)可以有效地去除饮用水中的IDM,当Fe(Ⅵ)投加量为0.3 mmol·L~(-1),溶液pH值为7,温度为25℃时,反应20 min后IDM的去除率达到95%,其反应过程符合准一级反应动力学模型;准一级动力学常数与Fe(Ⅵ)的投加量正相关,与IDM的初始浓度负相关;pH值升高会降低反应速率,温度升高会加快反应的进行.将不同温度条件下反应速率常数进行线性拟合,推算出了Fe(Ⅵ)与IDM反应的热力学参数Ea、ΔH和ΔS的值分别为15.79 J·mol~(-1)、13.27 J·mol~(-1)、-183.76 J·mol-1·K~(-1),说明该反应是吸热反应,同时活化能较低也说明了该反应在常规饮用水消毒条件下即可进行.TOC测定实验表明,Fe(Ⅵ)对IDM的矿化效率较低,大部分IDM转化成其它大分子有机物.  相似文献   

12.
为探究多环芳烃(PAHs)在海洋生物体内富集过程,选择皱纹盘鲍(Haliotis discus hannai)作为受试生物,应用半静态双箱动力学模型,分别考察了3-甲基菲和9,10-甲基蒽2种多环芳烃在皱纹盘鲍体内的富集动力学过程,通过非线性拟合获得鲍鱼对2种多环芳烃的吸收速率常数(K_1)、释放速率常数(K_2)、生物富集因子(BCF),以及平衡状态下鲍鱼体内2种多环芳烃的含量(Cmax)、生物学半衰期(t_(1/2))等动力学参数。结果表明,鲍鱼对9,10-甲基蒽富集动力学参数K_1、K_2、BCF、Cmax、t_(1/2)的平均值分别为4.9437、0.406、13.59、790.03μg·L~(-1)、3.78 d。鲍鱼对3-甲基菲富集动力学参数K_1、K_2、BCF、Cmax、t_(1/2)的平均值分别为2.3023、0.367、5.97、354.37μg·L~(-1)、3.13 d。鲍鱼在不同浓度下对3-甲基菲和9,10-甲基蒽的生物富集过程均符合双箱动力学模型。  相似文献   

13.
利用高铁酸钾氧化降解罗丹明(RhB)水溶液.研究表明,pH值、反应时间及K2FeO4投加量等因素对RhB的降解效果均有显著影响.酸性条件有利于RhB的降解,K2FeO4投加量在nK2FeO4 : nRhB= 2: 1时达到最优.pH = 2.0时,初始浓度为100 mol·l-1的RhB水溶液经K2FeO4氧化5 min后,脱色率和CODCr去除率分别为55.64%和24.55%.通过对反应后溶液的荧光光谱分析和GC-MS分析,推测RhB首先被K2FeO4氧化为羟基化RhB阴离子(RhB·OH-),随后进一步被氧化开环.  相似文献   

14.
利用臭氧(O_3)氧化降解酮洛芬(KET),采用淬灭实验探究了实验过程中KET的降解机理,鉴定了降解中间产物,推测了其降解路径,并且对KET降解过程中的急性毒性进行了评价.结果表明,臭氧能有效降解KET,其降解符合一级动力学.降解过程中臭氧和羟基自由基(·OH)共同作用于KET.KET降解过程中生成了21种主要产物,其中包括3-乙基二苯甲酮、3-(1-过氧化氢乙基)-二苯甲酮、3-(1-乙酰基)-二苯甲酮等产物,降解路径包括羟基化、脱羧基、脱甲基、侧链氧化、酮基断裂等.明亮发光杆菌急性毒性实验表明KET降解过程中生成了较母体更高风险的中间产物.  相似文献   

15.
高铁酸钾氧化降解新兴有机污染物的研究进展   总被引:1,自引:0,他引:1  
新兴有机污染物在传统的污水处理厂处理过程中难以完全去除,如果进入到水环境中,不仅影响水质,而且对水生态系统和人类健康具有潜在的风险.高铁酸钾在水处理领域被称为环境友好型的多功能水处理剂,其氧化降解新兴有机污染物的研究备受关注.本文详细介绍了高铁酸钾的结构和性质,重点论述了高铁酸钾与新兴有机污染物的反应机制,如:化学反应动力学、线性自由能关系、反应副产物及其毒性变化,并对未来的研究方向与发展趋势进行了展望.  相似文献   

16.
脉冲电晕等离子体降解有毒气体   总被引:1,自引:0,他引:1  
李战国  曹鹏  赵红杰 《环境化学》2012,31(6):869-873
采用脉冲电晕放电等离子体对化学毒剂模拟剂氯膦酸二乙酯(DECP)进行降解,结果表明,对初始浓度为70 mg·m-3的DECP降解率为96.4%.通过GC-MS和离子色谱分析,其降解产物主要有CHCl2-CH2Cl、CHCl2-CHCl2、二氯膦酸乙酯、HCl和H3PO4,并根据降解产物探讨了等离子体对DECP的降解反应机理.DECP分子中的P—Cl和C—O键断裂促使DECP矿化为H3PO4和HCl,而C—O键断裂形成的乙基与氯自由基反应形成CHCl2-CH2Cl和CHCl2-CHCl2;同时DECP分子中的一个P—O键发生断裂后与氯自由基结合形成了二氯膦酸乙酯.对DECP的反应动力学进行了分析讨论,得到其反应速率常数为0.0516 m.3(W.h)-1.  相似文献   

17.
采用三维电极电化学反应器组合Fenton试剂法对经过二级生化处理后的焦化废水进行深度处理。在三维电极参数一定的条件下,考察了影nfi]TOC去除率的影响因素,探讨了该反应体系的降解动力学及降解机理。正交试验结果表明,反应体系中各参数的最佳值分别为p(H202投加量)=300mg·L-1,pH3.4,反应时间为90min,c(FeS04-7H20投加量)为3.5mmol·L-1,TOC去除率可达到61.7%。焦化废水的降解反应表现为一级动力学。紫外吸收光谱分析结果,废水中有机物彻底发生了降解矿化,这为三维电极组合Fenton试剂工艺在焦化废水深度处理中的工程应用提供了一定的理论指导。  相似文献   

18.
利用H2O2为氧化剂,高温密闭条件下对硝基苯废水进行了降解研究.通过正交实验,分析了氧化剂种类、硝基苯初始浓度、反应温度和反应时间对硝基苯降解率的影响.利用HPLC分别对降解过程产物进行了分析,实验结果表明:H2O2在密闭高温条件下形成的自由基攻击硝基苯分子,硝基苯降解过程按硝基苯→硝基酚类→二氧化碳和水的途径进行,降解过程中产生的微量邻、间、对硝基酚类物质不会累积.H2O2在反应过程中消耗不显著,具有相对的化学稳定性.H2O2热氧化硝基苯的降解反应符合一级动力学方程,反应表观速率常数K表观=0.0073 min-1.  相似文献   

19.
废水中十六烷基三甲基溴化铵的光降解动力学研究   总被引:1,自引:0,他引:1  
季铵盐类阳离子表面活性剂污染会对水生环境产生不利影响,研究了在紫外灯下以Fe3+为单一催化剂降解水体中阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)的降解动力学规律.实验通过测定光降解过程中CTAB质量浓度的变化,研究了Fe3+质量浓度、溶液pH对CTAB降解的影响.初步测定了降解产物,探讨了降解机理.结果表明,CTAB光降解反应符合一级反应动力学规律,在溶液pH值为2.00~3.00时,一级动力学反应常数k受pH值、Fe3+质量浓度等影响,在0.032~0.180min-1之间变化,降解产物主要有HCOOH、CO2、NO-2等,当CTAB初始质量浓度为40 mg·L-1时TOC去除率在3 h达到32%.研究表明UV/Fe3+法可快速有效去除废水中季铵盐类表面活性剂污染物.  相似文献   

20.
研究了芬太尼在溴酸钠/亚硫酸氢钠体系中的降解行为,考察了影响芬太尼降解效率的因素.结果显示,溴酸钠与亚硫酸氢钠的物质的量比在1∶0.48至1∶1.26之间,体系的氧化能力强.体系对芬太尼的氧化降解效率与溴酸钠/亚硫酸氢的浓度呈正比,1 mol·L-1的溴酸钠/亚硫酸氢钠、29倍于芬太尼用量可在2 min完全降解芬太尼.有机溶剂具有富集有效氧化成分和芬太尼的作用,有机/水两项体系更利于芬太尼的氧化降解.向完成降解反应后的溴酸钠/亚硫酸氢钠废液中补加亚硫酸氢钠中和剩余氧化剂,可使反应液彻底环境无害化.此外,采用气质联用技术鉴定了芬太尼在溴酸钠/亚硫酸氢体系中的降解产物,探讨了可能的降解机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号