首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解橡胶粉尘的爆炸危险性,采用20 L球爆炸测试装置对常温常压下、粒径75μm以下的橡胶粉尘在质量浓度50~700 g/m3范围内的爆炸特性进行试验研究,测定其最大爆炸压力及爆炸指数随质量浓度的变化规律,进而对其爆炸危险性程度进行分级。结果表明:橡胶粉尘质量浓度为300 g/m3时,爆炸压力达到最大值0.49MPa;在橡胶粉尘质量浓度为250 g/m3时,爆炸指数达到最大值5.04MPa·m/s,根据ISO 6184粉尘爆炸烈度等级分级标准,其粉尘爆炸危险性分级为St-1级。  相似文献   

2.
为研究玉米淀粉粉尘爆炸危险性,采用哈特曼管式爆炸测试装置和20 L球爆炸测试装置对200目(<75μm)以下的玉米淀粉粉尘爆炸危险性进行评估,基于静电火花和粉尘质量浓度对粉尘爆炸的影响,对玉米淀粉的静电火花最小点火能量、爆炸下限质量浓度、最大爆炸压力和爆炸指数进行了研究,根据试验结果对玉米淀粉爆炸危险性进行分级。试验结果表明:温度在25℃,喷粉压力为0.80 MPa,粉尘质量浓度在250~750 g/m3范围内,粉尘的最小点火能量随着粉尘质量浓度增加而降低,其最小点火能量在40~80 mJ之间;在点火能量为10 kJ时,粉尘爆炸下限质量浓度在50~60 g/m3之间;在粉尘质量浓度为750 g/m3时,爆炸压力达到最大,为0.66 MPa;在粉尘质量浓度为500 g/m3时,爆炸指数达到最大,为17.21 MPa.m/s,其粉尘爆炸危险性分级为Ⅰ级。  相似文献   

3.
为研究超细聚苯乙烯微球粉体的燃爆特性,通过粉尘层最低着火温度测试装置、MIE-D1.2最小点火能测试装置、20 L球形爆炸测试装置,对其最低着火温度、最大爆炸压力、最小点火能量(MIE)等爆炸特性参数进行测定,探讨了加热温度、点火延滞时间、粉尘质量浓度、粉尘粒径对粉体燃爆特性的影响。结果表明:超细聚苯乙烯微球粉尘层在350℃左右时会发生无焰燃烧,且加热温度越高,粉体粒径越小,粉尘层发生着火时所需的时间越短;当粉体质量浓度为250 g/m3时,最大爆炸压力达到0.65 MPa,质量浓度为500 g/m3时,最大爆炸压力的上升速率达90 MPa/s以上;随点火延滞时间增加,最小点火能表现出先缓慢减小再急剧增大的规律;随粉尘质量浓度增加,最小点火能逐渐降低,当粉尘质量浓度超过500g/m3后逐渐趋于稳定。  相似文献   

4.
为研究制药工业粉尘爆炸事故机制,以典型药物替米考星为对象,分析药物粉尘爆炸和火焰传播特性。主要采用20 L球形爆炸装置、最小点火能(MIE)装置和颗粒图像测速仪(PIV)等设备,试验测试替米考星粉尘的爆炸下限、最大爆炸压力、爆炸指数、MIE和火焰传播速度等指标。结果表明,平均粒径为50μm的替米考星球形颗粒粉尘,其爆炸下限质量浓度为20~30 g/m3,最大爆炸压力为0.89 MPa,最大爆炸指数为25.80 MPa·m/s,MIE为13.20 m J;当粉尘质量浓度为416.67 g/m3时,喷粉初始压力为0.5 MPa,喷粉点火87.5 ms后,竖直管道中火焰传播速度达到最大值34 m/s。  相似文献   

5.
为研究7-氨基头孢烷酸(7-ACA)粉体实际生产过程中的燃爆危险性,模拟实际生产环境,测试了7-ACA粉体在有机溶剂丙酮存在环境下的燃爆特性及氮气、二氧化碳和氩气的抑爆效果。实验测得,配比为1 g粉体0. 25 m L丙酮与1 g粉体0. 5 m L丙酮的混合粉最小点火能分别为11 m J和4 m J;最大爆炸压力分别为0. 75 MPa和0. 78 MPa;最大爆炸压力上升速率为103. 98 MPa/s和144. 71 MPa/s。结果显示:向粉体中加入丙酮后,混合物的燃烧敏感性增强,燃爆危险性增加。设计混气系统,测试氮气、二氧化碳及氩气对混合物的抑爆效果,结果显示,二氧化碳抑爆效果最好,氮气、氩气次之。  相似文献   

6.
为研究铝粉在密闭空间内爆炸特性,降低其爆炸造成的损害,利用自行设计的水平管道式可燃气体-粉尘爆炸装置,在室温下对粒度为6~8μm,9~12μm,15~17μm的铝粉在100~800 g/m3浓度范围内的爆炸特性进行试验研究。结果表明:铝粉在浓度为600 g/m3时,最大爆炸压力和最大压力上升速率最大,爆炸时间最小;铝粉浓度较低时,由于氧气充足,随着铝粉浓度增大,最大爆炸压力和最大压力上升速率增大,爆炸时间减小;当铝粉浓度超过600 g/m3,受到氧气浓度限制,最大爆炸压力和最大压力上升速率随浓度增大而减小,爆炸时间增大;相同浓度的铝粉,粒度越小,最大爆炸压力和最大压力上升速率越大,爆炸时间越小。粒度越小的铝粉,爆炸的可能性和危险性越大。  相似文献   

7.
为了解国内某啤酒企业平筛工艺过程除尘系统新鲜谷物粉尘爆炸特性,采用1.2 L哈特曼管式粉尘爆炸试验装置进行试验,以研究其粉尘粒径、质量浓度、含水率因素对谷物粉尘爆炸压力(P)及爆炸压力上升速率(d P/dt)的影响。结果表明,该谷物粉尘爆炸下限(LEL)质量浓度为125~166.67 g/m~3,质量浓度为291.67g/m~3时存在最大爆炸压力P_(max)和最大爆炸压力上升速率(d P/dt)max,分别为1.81 MPa和10 MPa/s;d P/dt与P变化具有相似性。谷物粉尘粒径由98~105μm增加至180~1 250μm,其LEL质量浓度由50~58.33 g/m~3增加至141.67~150 g/m~3,且P由0.90 MPa降低至0.72 MPa;含水率由6.39%降低至0(绝对干燥)时,P由1.3 MPa增加至2.1 MPa。  相似文献   

8.
为分析煤粉粉尘的爆炸特性,利用20 L爆炸球测试装置与Fluent软件,试验研究煤粉粒径、质量浓度对煤粉云最大爆炸压力、爆炸指数的影响。结果表明,当试验环境温度为293~303 K时,点火能量为10 k J,粒径为26,73和115μm等3种粉尘云的最大爆炸压力均随着粉尘质量浓度的增加先升后降,在350 g/m3处达到最大值。同一粉尘质量浓度下,最大爆炸压力、爆炸指数均随着粒径的减小而增大。在60~120 ms时间内,粒径为26μm、质量浓度为350 g/m3的粉尘颗粒在球体内能保持一定的稳定状态,60 ms左右扩散达到相对均匀状态。爆炸后,燃烧最高温度为2 060 K,未燃区温度由300 K上升至375 K。粒径为26μm的煤粉尘云爆炸危险性等级为Ⅱ级,粒径为73和115μm的煤粉尘云爆炸危险性等级为Ⅰ级。  相似文献   

9.
为研究糖粉粉尘爆炸特性,采用20 L球形爆炸装置进行试验测试,通过改变糖粉粒径来测定粉尘爆炸下限质量浓度(LEL)、爆炸压力以及爆炸指数特性参数,研究粒径对糖粉爆炸特性的影响。结果表明,随着粒径的减小,粉尘LEL先由70~80 g/m3降低到0~10 g/m3,再上升到20~30 g/m3;爆炸压力由0.75 MPa增大到1.07 MPa;爆炸指数由11.2 MPa·m/s增大到23.4 MPa·m/s。此外,粒径为45~53μm的3号粉尘的LEL为0~10 g/m3,其爆炸敏感度最高;而粒径小于等于45μm的4号粉尘的爆炸压力为1.07 MPa,爆炸指数为23.4 MPa·m/s,其爆炸烈度最大。随着粒径的减小,糖粉粉尘的爆炸烈度单调性增大。  相似文献   

10.
针对工业生产中的酚醛树脂粉尘爆炸问题,运用20 L近球形粉尘爆炸特性测试系统,测试了常温常压条件下酚醛树脂粉尘的爆炸下限、最大爆炸压力和最大压力上升速率等爆炸特征参数,分析不同质量浓度与其之间的变化规律,并计算出相应爆炸指数,对爆炸危害等级进行分级。实验结果表明,酚醛树脂粉尘云的爆炸下限质量浓度为10~20 g/m~3;最大爆炸压力、最大压力上升速率和爆炸指数关系曲线变化趋势大致相同,均呈现先升高后降低的现象,并同在200 g/m~3时达到最大值,分别为0.664 MPa,82.5 MPa/s,22.4 MPa·m/s;其粉尘爆炸危害等级为S_(t2)。  相似文献   

11.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

12.
采用MIE-D1.2型最小点火能测试装置及20 L球型粉尘爆炸测试装置,对苯乙烯丙烯酸共聚物/碳黑混合体系粉尘的爆炸特性进行研究。结果表明,过74μm、58μm、47μm孔径筛的粉尘对静电火花敏感,其最小点火能表征值分别为610 mJ、361 mJ、201 mJ。随粉尘质量浓度增加,最小点火能呈现先减小后增加的规律。随粉尘粒径减小,最小点火能与粉尘质量浓度变化关系曲线向低粉尘质量浓度和低点火能量方向偏移,且对应的最敏感爆炸质量浓度从500 g/m~3降至200 g/m~3。随粉尘质量浓度增加,过147μm、74μm、47μm孔径筛的苯乙烯丙烯酸共聚物/碳黑混合体系粉尘爆炸压力及爆炸压力上升速率呈现先增加后减小趋势。在相同粉尘质量浓度下,中位径小于74μm的苯乙烯丙烯酸共聚物/碳黑混合体系粉尘,粉尘的爆炸压力增幅明显减小。苯乙烯丙烯酸共聚物/碳黑混合体系粉尘爆炸下限质量浓度为25 g/m~3,最大爆炸指数为14.636 MPa·m/s,爆炸危险等级划分为St1。  相似文献   

13.
为研究硬脂酸粉尘的爆炸特性,采用20 L球型爆炸仪对4个粒径范围的硬脂酸粉尘进行粉尘爆炸试验研究。结果表明:一定浓度范围内增大粉尘浓度能够提升硬脂酸粉尘的爆炸能量和燃烧速率。增大粉尘浓度,爆炸猛烈度先增强后减弱;减小粉尘粒径,能增强爆炸猛烈度和敏感度。粒径小于58 μm粉尘的爆炸猛烈度和敏感度最大,浓度500 g/m3时,该粉尘有最大爆炸压力1.12 MPa和最大升压速率142.00 MPa/s。  相似文献   

14.
为研究高原低压环境下固液混合燃料的燃爆特性及反应机制,利用20 L爆炸球测试系统,以铝粉-乙醚和铝粉-乙醚-硝基甲烷2种固液混合燃料为研究对象,开展环境初始压力对爆炸峰值压力、爆炸质量浓度下限及爆炸产物的影响趋势研究。研究表明:2种固液混合燃料的最佳爆炸质量浓度、爆炸压力和爆炸危险性随环境压力的降低而降低;与零海拔相比,在模拟海拔4 500 m处(57.4 kPa),450 g/m3固液混合燃料的爆炸压力降低了26.84%~30.80%,爆炸质量浓度下限提高了5~10 g/m3;随着环境压力降低,爆炸气体产物一氧化碳(CO)体积分数增加,二氧化碳(CO2)、一氧化氮(NO)和二氧化氮(NO2)体积分数降低;爆炸固体残余物主要为α-氧化铝(α-Al2O3)和铝(Al)。  相似文献   

15.
长直水平管道中铝粉/空气混合物爆炸试验研究   总被引:1,自引:0,他引:1  
在长为32.4 m,内径为0.199 m的大型长直水平管道中对铝粉/空气两相流的爆炸过程进行了试验研究.试验初始压力为0.14MPa,初始温度为20℃,水平布置17个传感器对试验数据进行测量记录.采用40J电火花进行点火,对铝粉/空气混合物燃烧转爆轰过程(DDT)进行分析,并对不同质量浓度时混合物的燃爆情况进行比较.结果表明:铝粉质量浓度为184 g/m3时,铝粉/空气混合物未被引燃;铝粉质量浓度为230 g/m3时,水平管道末端刚好进入爆轰阶段,此质量浓度为该条件下燃烧转爆轰的最低临界质量浓度;质量浓度为276g/m3、367 g/m3、459 g/m3 505g/m3、551 g/m3、643 g/m3时,均能在此水平管道内完成爆燃向爆轰的转变,并且能够自持.铝粉/空气混合物爆轰的最优质量浓度为551 g/m3.对质量浓度为505 g/m3时的铝粉/空气混合物的燃烧转爆轰过程进行分析,进入爆轰阶段后,多相燃料空气混合物爆轰超压和速度曲线呈现随距离传播不断振荡,但均值稳定的典型特征,其爆轰波胞格尺寸λ约为0.486m.  相似文献   

16.
为研究高密度聚乙烯(HDPE)粉尘燃爆及其泄爆特性,通过结合热重(TG)和差示扫描量热(DSC)分析高密度聚乙烯燃爆机理,利用20 L球形爆炸测试系统、最小点火能测定仪、最低着火温度测定仪等探究粉尘质量浓度对最小点火能(MIE)、最低着火温度(MIT)、最大爆炸压力(Pmax)和爆炸指数(Kst)的影响;在300 g/m3爆炸浓度及以上时,分析高密度聚乙烯泄放特性并探究在不同质量浓度下的泄放火焰特征。研究结果表明:随着HDPE粉尘质量浓度增加,最大爆炸压力先增加后减小、最低着火温度和最小点火能先减小后增加;泄爆压力峰值随着HDPE粉尘泄爆膜层数增加而升高,随着泄爆口径的增大而下降;在质量浓度为300 g/m3时,出现2次火焰长度较大值,且第2次泄放火焰更亮,燃烧面积更大;在质量浓度为400 g/m3时,产生2次火焰。研究结果可为预防聚乙烯粉尘爆炸事故以及减小相应事故损失提供参考。  相似文献   

17.
五氯硫酚锌盐的一些基本的危险性参数,如燃烧爆炸性能,目前国内外报道极少。笔者采用野外定性燃烧试验、哈特曼管实验及20 L球实验,对该物质粉尘爆炸的危险性进行研究。结果表明,该物质具有燃烧爆炸危险性,但与细小片状铝粉(燃爆危险性很强烈)相比,其粉尘的燃爆危险性很弱。以硅系点火具作为点火源,在20 L爆炸球中测试获得该粉尘爆炸下限浓度约为213 g/m3。根据ISO-6184及VD I-3673等标准,认为该粉尘的爆炸猛烈度为1级。所得结果为该物质的生产及使用安全提供了重要的参考。  相似文献   

18.
采用哈特曼管式爆炸测试装置和20L球爆炸测试装置对小麦淀粉粉尘爆炸特性参数进行评估,对粒度小于75μm的样品的爆炸危险性参数进行测试,得出了一定条件下的小麦淀粉对静电火花的敏感程度以及其爆炸的猛烈程度,进而对其爆炸危险性程度进行分级。结果表明,温度在25℃,喷粉压力为0.70MPa,小麦淀粉的最小点火能量在40~80mJ;在点火能量为10 kJ时,最大爆炸压力为0.60MPa,最大爆炸指数为7.87MPa.m/s,其粉尘爆炸危险性为Ⅰ级。  相似文献   

19.
采用1.2 L哈特曼管爆炸装置分别对粒径小于54μm、74μm、150μm及大于150μm的戊唑醇粉尘进行测试。针对戊唑醇粉尘浓度及粒径范围对其最小点火能的影响,分别进行单因素试验,并对其危险性进行分级。结果表明,保持粒径小于150μm,环境温度为20℃,喷粉压力为0.7 MPa,在质量浓度100~1 300 g/m~3之间,戊唑醇粉尘的最佳敏感质量浓度ρ_m为983.71 g/m~3,此时的最小点火能为404.74 mJ。保持戊唑醇粉尘质量浓度为900 g/m~3,环境温度为20℃,喷粉压力为0.7 MPa不变,粒径小于54μm、74μm、150μm及大于150μm的戊唑醇粉尘的最小点火能分别为10 mJ、100 mJ、400 mJ和1 000 mJ以上。因此,判定戊唑醇粉尘最小点火能属于M2级,为特别着火敏感性。  相似文献   

20.
为研究粉尘质量浓度、粒径和点火延迟时间对木粉尘最大爆炸压力影响,以桑木粉尘为对象,利用1.2 L的Hartmann管进行试验。研究结果表明:最大爆炸压力随着粉尘质量浓度的增加先增大后减小,随着粉尘粒径的增大而减小,随着点火延迟时间的增大而增大。在单因素试验基础上,运用Design-Expert软件对Box-Behnken所设计的响应面试验方案分析,得到影响粉尘最大爆炸压力大小顺序为:点火延迟时间>质量浓度>粒径,同时Design-Expert软件预测出最危险爆炸强度的试验条件为:质量浓度840.24 g/m3,粒径260目,点火延迟时间12 s,最大爆炸压力为0.511 775 MPa,经检验,拟合性较好,为防爆设备本质安全强度设计提供了一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号