首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to investigate the influence of organic matter on arsenic retention, we used batch experiments at pH 7 to determine the adsorption of As(V) on three different solids: a crude, purified, Ca-exchanged kaolinite and two kaolinites coated with humic acids (HAs) having different nitrogen contents. We first examined the adsorption of each HA onto kaolinite, and then used the HA-kaolinite complexes to study As(V) adsorption. The results clearly show an influence of the HA coating on As adsorption. For example, with low initial As concentrations the solid/liquid partition coefficient (R(d)) for both HA complexes is greater than that for the crude kaolinite. We found that increasing the initial As concentrations decreased the R(d) values of the HA-coated kaolinites until finally they were the same as the crude kaolinite R(d) values. This suggests that adsorption occurs first on the HA sites and then, once the HA sites are saturated, on the remaining kaolinite sites. We also noted that the more reactive HA-kaolinite complex was the one with the highest N/C ratio. Comparing the amount of amine groups in the HA-kaolinite complexes with the total amount of adsorbed As indicates that the HA amine groups, due to their positive charge at pH 7, play a key role in the adsorption of As onto organic matter.  相似文献   

2.
Humic colloid-borne migration of uranium in sand columns   总被引:3,自引:0,他引:3  
Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm(-3)). U migration was studied under an Ar/1% CO2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers.  相似文献   

3.
Klavins M  Eglite L  Zicmanis A 《Chemosphere》2006,62(9):1500-1506
A new method was developed for the immobilization of humic substances. Humic acids (HA) immobilized onto different carriers were studied as sorbents for organic and inorganic substances. The sorption isotherms of 4-aminoazobenzene, Crystal Violet, Methylene Green, and flavine mononucleotide on immobilized HA show that pH and salt concentration have a significant effect on the sorption process, largely depending on the properties of polymeric matrix. Humic acids from different sources showed differing sorption capacity for the studied groups of substances.  相似文献   

4.
The aim of the present study was to investigate tebuconazole sorption on common soil minerals (birnessite, ferrihydrite, goethite, calcite and illite) and humic acids (representing soil organic matter). Tebuconazole was used (i) in the commercial form Horizon 250 EW and (ii) as an analytical grade pure chemical. In the experiment with the commercially available tebuconazole, a significant pH-dependent sorption onto the oxides was observed (decreasing sorption with increasing pH). The highest sorption was found for ferrihydrite due to its high specific surface area, followed by humic acids, birnessite, goethite and illite. No detectable sorption was found for calcite. The sorption of analytical grade tebuconazole on all selected minerals was significantly lower compared to the commercial product. The sorption was the highest for humic acids, followed by ferrihydrite and illite and almost negligible for goethite and birnessite without any pH dependence. Again, no sorption was observed for calcite. The differences in sorption of the commercially available and analytical grade tebuconazole can be attributed to the additives (e.g., solvents) present in the commercial product. This work proved the importance of soil mineralogy and composition of the commercially available pesticides on the behavior of tebuconazole in soils.  相似文献   

5.
He Y  Xu J  Wang H  Zhang Q  Muhammad A 《Chemosphere》2006,65(3):497-505
Sorption of pentachlorophenol (PCP) by pure minerals and humic acids were measured to obtain additional perspective on the potential contributions of both clay minerals and soil organic matter (SOM) to contaminants retention in soils. Four types of common soil minerals and two kinds of humic acids (HAs) were tested. The sorption affinity for PCP conformed to an order of HAs > K-montmorillonite > Ca-montmorillonite > goethite > kaolinite. Such a difference in sorption capacity could be attributed to the crucial control of HAs. Clay minerals also had their contribution, especially K-montmorillonite, which played an important, if not dominant, role in the controlling process of PCP sorption. By removing 80% (on average) of the organic carbon from the soils with H(2)O(2), the sorption decreased by an average of 50%. The sorption reversibility had been greatly favored as well. Considering the uncharged mineral fractions in soil before and after H(2)O(2)-treated, the main variation in sorption behavior of the soil might thus be related to the removed organic carbon and the reduced pH. This testified rightly the interactive effect of SOM and clay minerals on PCP sorption as a function of pH.  相似文献   

6.
The migration behavior of U(IV) and U(VI) in the presence of humic acid was studied in a quartz sand system. Laboratory column experiments were performed using humic acid, U(VI) in humic acid absence, U(IV) and U(VI) in humic acid presence, and for comparison a conservative tracer. In experiments using humic acid, both redox species of U migrate nearly as fast as the conservative tracer. Humic acid accelerates the U(VI) breakthrough compared to the humic acid-free system. There are strong indications for a similar effect on the U(IV) transport. At the same time, a part of U(IV) and U(VI) associated with the humic acid is immobilized in the quartz sand due to humic colloid filtration thus producing a delaying effect. Tailing at a low concentration level was observed upon tracer elution. The experimental breakthrough curves were described by reactive transport modeling using equations for equilibrium and kinetic reactions. The present study demonstrates that humic acids can play an important role in the migration of actinides. As natural organic matter is ubiquitous in aquifer systems, the humic colloid-borne transport of actinides is of high relevance in performance assessment.  相似文献   

7.
Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups.  相似文献   

8.
Column experiments were conducted for examining the effectiveness of the cationic hydrogel on Cr(VI) removal from groundwater and soil. For in-situ groundwater remediation, the effects of background anions, humic acid (HA) and pH were studied. Cr(VI) has a higher preference for being adsorbed onto the cationic hydrogel than sulphate, bicarbonate ions and HA. However, the adsorbed HA reduced the Cr(VI) removal capacity of the cationic hydrogel, especially after regeneration of the adsorbents, probably due to the blockage of adsorption sites. The Cr(VI) removal was slightly influenced by the groundwater pH that could be attributed to Cr(VI) speciation. The 6-cycle regeneration and reusability study shows that the effectiveness of the cationic hydrogel remained almost unchanged. On average, 93% of the adsorbed Cr(VI) was recovered in each cycle and concentrated Cr(VI) solution was obtained after regeneration. For in-situ soil remediation, the flushing water pH had an insignificant effect on the release of Cr(VI) from the soils. Multiple-pulse flushing increased the removal of Cr(VI) from the soils. In contrast, more flushing water and longer operation may be required to achieve the same removal level by continuous flushing.  相似文献   

9.
Sorption–desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption–desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kdads, varied according to its initial concentration and was ranged 40–84 for HA, 14–58 for clay and 1.85–4.15 for bulk soil. Freundlich sorption coefficient, Kfads, values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ~800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/nads values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.  相似文献   

10.
Cyromazine (CY) is a triazine pesticide used as an insect growth inhibitor for fly control in cattle manure, field crops, vegetables, and fruits. Sorption of CY onto humic acid (HA) may affect its environmental fate. In this study, HA was used to investigate the sorption of CY at different solution chemistry conditions (pH, ionic strength) and in the presence of foreign ions and norfloxacin. All sorption isotherms fitted well with the Freundlich and Langmuir models. The sorption reached a maximum at initial pH 4.0 over the initial pH range of 3.0–7.0, implying that the primary sorption mechanism was cation exchange interaction between CY+ species and the negatively charged functional groups of HA. Increasing Ca2+ concentration resulted in a considerable reduction in the K d values of CY, hinting that Ca2+ had probably competed with CY+ for the cation exchange sites on the surfaces of HA. The sorption of CY on HA in different ionic media followed the order of NH4Cl ≈ KCl > K2SO4 > ZnCl2 ≈ CaCl2 at pH 5.0. Spectroscopic evidence demonstrated that the amino groups and triazine ring of CY was responsible for sorption onto HA, while the carboxyl group and the O-alkyl structure of HA participated in adsorbing CY.  相似文献   

11.
Arsenic (As) contaminated aquifers contain iron minerals and clays that strongly bind As at their surfaces. It was suggested that As mobilization is driven by natural organic matter (including fulvic acids (FA) and humic acids (HA)) present in the aquifers either via providing reducing equivalents for reductive dissolution of Fe(III) (hydr)oxides or via competitive desorption of As from the mineral surfaces. In the present study we quantified sorption of As(III) and As(V) to Ca(2+)-homoionized illite (IL) and to kaolinite (Kao) as well as to HA-coated clays, i.e., illite-HA (IL-HA) and kaolinite-HA (Kao-HA) at neutral pH. Clay-HA complexes sorbed 28-50% more As than clay-only systems upon addition of 100μM As(III)/As(V) to 0.5g of clay or HA-clay with Ca(2+) probably playing an important role for HA binding to the clay surface and As binding to the HA. When comparing sorption of As(V) and As(III) to clay and HA-clay complexes, As(V) sorption was generally higher by 15-32% than sorption of As(III) to the same complexes. IL and IL-HA sorbed 11-28% and 6-11% more As compared to Kao and Kao-HA, respectively. In a second step, we then followed desorption of As from Kao, Kao-HA, IL and IL-HA by 100 and 500μM phosphate or silicate both at high (0.41-0.77μmol As/g clay), and low (0.04 to 0.05μmol As/g clay) As loadings. Phosphate desorbed As to a larger extent than silicate regardless of the amount of As loaded to clay minerals, both in the presence and absence of HA, and both for illite and kaolinite. At high loadings of As, the desorption of both redox species of As from clay-HA complexes by phosphate/silicate ranged from 32 to 72% compared to 2-54% in clay only systems meaning that As was desorbed to a larger extent from HA-coated clays compared to clay only systems. When comparing As(III) desorption by phosphate/silicate to As(V) desorption in high As-loading systems, there was no clear trend for which As species is desorbed to a higher extent in the four clay systems meaning that both As species behave similarly regarding desorption from clay surfaces by phosphate/silicate. Similarly, no significant differences were found in high As-loading systems in the amount of As desorbed by phosphate/silicate when comparing Kao vs. IL and Kao-HA vs IL-HA systems meaning that both clay types behave similarly regarding desorption of As by phosphate/silicate. At low As loadings, up to 80% of As was desorbed by phosphate and silicate with no noticeable differences being observed between different As species, different types of clay, clay vs clay-HA or the type of desorbant (phosphate and silicate). The results of this study showed that HA sorption to Ca(2+)-homoionized clay minerals can increase As binding to the clay although the As sorbed to the clay-HA is also released to a greater extent by competing ions such as phosphate and silicate. Desorption of As depended on the initial loadings of As onto the clay/clay-HA. Based on our results, the effect of humic substances on sorption of As and on desorption of As by phosphate and silicate has to be considered in order to fully understand and evaluate the environmental behavior of As in natural environments.  相似文献   

12.
Yang JK  Lee SM 《Chemosphere》2006,63(10):1677-1684
The removal efficiencies of Cr(VI) and HA, using a TiO(2)-mediated photocatalytic process, were investigated with variations in the pH, TiO(2) dosage and Cr(VI)/HA ratio. During the photocatalytic reaction, the total removal of Cr(VI) occurred through adsorption onto TiO(2), as well as its reduction to Cr(III). However, oxidation and adsorption were identified as important removal processes for the treatment of HA. Due to the anionic type adsorption onto TiO(2) and its acid-catalyzed photocatalytic reduction, the removal of Cr(VI) decreased with increasing pH, while that of HA increased with increasing pH. The TiO(2) dosage was also an important parameter for the removal of Cr(VI). As the TiO(2) dosage was increased to 2.5 g l(-1), the removal of Cr(VI) was continuously enhanced, but decreased at dosages above 3 g l(-1) due to the increased blockage of the incident UV light used for the photocatalytic reaction. The removal of Cr(VI) was greatly enhanced when the system contained both HA and Cr(VI) compared to Cr(VI) alone. Also, the removal of HA was greatly enhanced when the system contained both HA and Cr(VI) compared to HA alone. The removal of Cr(VI) was continuously enhanced as the HA concentration gradually increased; however, no further increase was observed above 20 mg l(-1) HA due to the increased absorption of the UV light. This result supports that the photocatalytic reaction, with illuminated TiO(2), could be applied to more effectively treat wastewater containing both Cr(VI) and HA than that containing a single species only.  相似文献   

13.
Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.  相似文献   

14.
The sorption of Cu(II) from an aqueous solution using ZSM-5 zeolite was investigated by batch technique under ambient conditions. Sorption was investigated as a function of pH, ionic strength, foreign ions, humic substances, and temperature. The results indicate that the sorption of Cu(II) on ZSM-5 zeolite is strongly dependent on pH. Sorption is dependent on ionic strength at low pH, but independent of ionic strength at high pH values. The presence of humic/fluvic acid (HA/FA) enhances the sorption of Cu(II) on ZSM-5 zeolite at low pH values, and reduces Cu(II) sorption at high pH values. Sorption isotherms were well simulated by the Langmuir model. Thermodynamic parameters (i.e., deltaH0, deltaS0 and deltaG0) for the sorption of Cu(II) were determined from temperature-dependent sorption isotherms at 293.15, 313.15, and 333.15 K, respectively. Results indicate that the sorption process of Cu(II) on ZSM-5 zeolite is spontaneous and endothermic.  相似文献   

15.
The sorption behaviour of the severely toxic heavy metal thallium (Tl) as a monovalent cation onto three representative materials (goethite, pyrolusite and a natural sediment sampled from a field site) was examined as a function of pH in the absence and presence of two natural humic acids (HAs), using 204Tl(I) as a radiotracer. In order to obtain a basic understanding of trends in the pH dependence of Tl(I) sorption with and without HA, sorption of HAs and humate complexation of Tl(I) as a function of pH were investigated as well. In spite of the low complexation between Tl(I) and HAs, the presence of HAs results in obvious alterations of Tl(I) sorption onto pyrolusite and sediment. An influence on Tl(I) sorption onto goethite was not observed. Predictions of Kd (distribution coefficient) for Tl(I) on goethite in the presence of HAs, based on a linear additive model, agree well with the experimental data, while a notable disagreement occurs for the pyrolusite and sediment systems. Accordingly, it is suggested that HAs and goethite may act as a non-interacting sorbent mixture under the given conditions, but more complex interactions may take place between the HAs and the mineral phases of pyrolusite or sediment.  相似文献   

16.
Adsorption isotherms for Pb onto six soil components (quartz, feldspar, kaolinite, montmorillonite, goethite and humic acid) were studied. The influence of pH, EDTA and citric acid on the adsorption of Pb onto montmorillonite, goethite and humic acid were considered. Results indicate that the experimental data fit the Langmuir Adsorption Isotherm. The adsorption capacity for Pb at pH 6 was found to be in the order: humic acid (22.7 mg g(-1)) > goethite (11.04 mg g(-1)) > montmorillonite (10.4 mg g(-1)) > kaolinite (0.91 mg g(-1)) > feldspar (0.503 mg g(-1)) > quartz (0.148 mg g(-1)). Generally, the amount of Pb adsorbed onto montmorillonite, goethite and humic acid decreased with increasing concentrations of EDTA and citric acid and with increases in alkality. However, there were two exceptions: (1) addition of citric acid increased the amount of Pb adsorbed onto humic acid; and (2) the amount of Pb adsorbed onto goethite decreased with increasing pH in the presence of EDTA. Some mechanisms involved in the adsorption reactions are discussed.  相似文献   

17.
Lippold H  Evans ND  Warwick P  Kupsch H 《Chemosphere》2007,67(5):1050-1056
Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio.  相似文献   

18.
Lee JH  Zhou JL  Kim SD 《Chemosphere》2011,85(8):1383-1389
The removal of 17β-estradiol (E2) by biodegradation and sorption onto humic acid (HA) was examined at various HA concentrations. Subsequently, estrogenicity associated with E2 removal was estimated using E-screen bioassay. Results showed that E2 biodegradation and its subsequent transformation to estrone (E1) were significantly reduced with increasing HA concentration. In addition, the presence of nutrients enhanced the biodegradation of E2. Overall, E2 biodegradation was the dominating contributor to its removal, which demonstrated a significantly negative correlation with E2 sorption at various HA concentrations. The sorption of E2 by HA was significantly enhanced with increasing HA concentration. Estrogenicity associated with residual E2 showed that there existed a significant difference among various HA concentrations, with the lowest value in the absence of HA. The findings suggest that the presence of HA and nutrients in natural waters should be considered in assessing estrogenicity of environmental samples due to complex sorption and biodegradation processes.  相似文献   

19.
Complexation by humic acid (HA) of basic (quinoline) and neutral (naphthalene) polycyclic aromatic compounds (PACs) was compared using fluorescence spectroscopy and equilibrium dialysis (ED). These compounds sorb to HA via cation exchange and hydrophobic interactions, respectively. Ionization of quinoline strongly affects its sorption to HA; maximum sorption is observed at pH close to logKb (4.92), and competition with H+ and electrolyte cation (Li+) is evident. Spectroscopic experiments indicate that quinolinium (QH+) cation fluorescence is quenched via a static mechanism (i.e., a dark complex is formed) when the protonated form is adsorbed via ion exchange to HA. The extent of sorption, calculated from fluorescence data using the Stern-Volmer equation, was compared to independent ED measurements. Although both methods indicated the same trends with solution chemistry, fluorescence quenching data suggested more extensive complexation than that measured using ED. In contrast to ionizable PACs, studied here and previously, interaction of naphthalene with HA is unaffected by changes in solution conditions (pH, ionic strength).  相似文献   

20.
Effect of physical forms of soil organic matter on phenanthrene sorption   总被引:2,自引:0,他引:2  
Pan B  Xing B  Tao S  Liu W  Lin X  Xiao Y  Dai H  Zhang X  Zhang Y  Yuan H 《Chemosphere》2007,68(7):1262-1269
The sorption coefficient, K(OC), of phenanthrene (PHE) has been reported to vary with different types of organic matter, leading to uncertainties in predicting the environmental behavior of PHE. Among the studies that relate organic matter properties to their sorption characteristics, physical conformation of organic matter is often neglected. In this work, organic matter samples of different physical forms were examined for their sorption characteristics. Dissolved humic acids (DHA) showed significantly higher K(OC) than the corresponding solid humic acids (SHA) from which the DHAs were made. The K(OC) of DHAs was found to be related to polarity, whereas K(OC) of SHAs increased with aliphatic carbon content. Soil particles were treated with H(2)O(2) to remove organic matter, and humic acid was coated on H(2)O(2)-treated soil particles to make organo-mineral complexes at pH 4, 7 and 10. Although the nonlinear sorption was apparent for SHAs and H(2)O(2)-treated soil particles, the organo-mineral complexes formed using these two components at pH 4, 7 and 10 exhibited relatively linear sorption at organic carbon content, f(OC)>0.5%. These results indicate that organic matter of the same composition may have different sorption properties due to different physical forms (or conformations). Nonlinear sorption for the complexes formed at pH 4 with lower f(OC) (<0.5%) was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号