首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This study investigated crystallization mechanisms for the formation of lead aluminosilicate by sintering lead stabilization with kaolin-based precursors. PbAl2Si2O8 was found to be the only stable lead aluminosilicate in low-PbO system and demonstrates its highly intrinsic resistance to acid attack in leaching test. A three-stage PbAl2Si2O8 formation mechanism was supported by the results of the changing temperature in the system. Amorphization of sintered products was observed in both PbO/kaolinite and PbO/mullite systems at 600–700°C. When the temperature was increased to 750–900°C, the crystallochemical formation of lead aluminosilicates (i.e., Pb4Al4Si3O16, Pb6Al6Si2O21, and PbAl2Si2O8) was observed. Pb4Al4Si3O16 and Pb6Al6Si2O21 were found to be the intermediate phases at 700–900°C. Finally, PbAl2Si2O8 was found to be the only crystallite phase to host Pb at above 950°C. A maximum of 80% and 96.7% Pb can be incorporated into PbAl2Si2O8 in PbO/kaolinite and PbO/mullite systems, respectively, but the final products exhibited different microstructures. To reduce environmental hazard of lead, this strategy demonstrated a preferred mechanism of immobilizing lead into PbAl2Si2O8 structure via kaolin-based precursors.  相似文献   

2.
Zhang K  Liu J  Liu W  Yang J 《Chemosphere》2011,85(4):689-692
A novel approach to prepare glass-ceramics from molten steel slag (MSS) was proposed. In laboratory, the water-quenched steel slag was melted at 1350 °C to simulate the MSS. A mixture of additive powders in wt.% (55 quartz powder, 5 Na2O, 16 emery powder, 15 CaO, 8 MgO, 1 TiO2) were melted into liquid at 1350 °C separately. Then the MSS and the molten additives were mixed homogeneously in order to obtain parent glass melt. The proportion of MSS in the melt was 50 wt.%. The melt was subsequently cast, annealed, heat-treated and transformed into glass-ceramics. Their microstructure and crystallization behavior were analyzed. The samples exhibited excellent properties and displayed bulk crystallization. The major crystallized phase was diopside ((Fe0.35Al0.20Mg0.44)Ca0.96(Fe0.08Si0.70Al0.20)2O6.12), which was uniformly distributed in the microstructure. The novel approach may help iron and steel industry achieve zero disposal of steel slag with utilization of the heat energy of the MSS.  相似文献   

3.
Particles from channelled emissions of a battery recycling facility were size-segregated and investigated to correlate their speciation and morphology with their transfer towards lettuce. Microculture experiments carried out with various calcareous soils spiked with micronic and sub-micronic particles (1650 ± 20 mg Pb kg−1) highlighted a greater transfer in soils mixed with the finest particles. According to XRD and Raman spectroscopy results, the two fractions presented differences in the amount of minor lead compounds like carbonates, but their speciation was quite similar, in decreasing order of abundance: PbS, PbSO4, PbSO4·PbO, α-PbO and Pb0. Morphology investigations revealed that PM2.5 (i.e. Particulate Matter 2.5 composed of particles suspended in air with aerodynamic diameters of 2.5 μm or less) contained many Pb nanoballs and nanocrystals which could influence lead availability. The soil-plant transfer of lead was mainly influenced by size and was very well estimated by 0.01 M CaCl2 extraction.  相似文献   

4.
5.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

6.
Zhang W  Zhuang L  Yuan Y  Tong L  Tsang DC 《Chemosphere》2011,83(3):302-310
Phenanthrene is commonly present together with heavy metals at many contaminated sites. This study investigated the influence of coexisting lead (Pb2+) or cadmium (Cd2+) on phenanthrene adsorption on soils. Batch experiments were conducted under different geochemical conditions including pH, mineral structure, organic matter content, and varying amounts of heavy metals. The results showed that the presence of heavy metals in solution at a fixed pH of 5.8 ± 0.1 enhanced phenanthrene adsorption, the extent of which was closely related to the concentrations and the electro-negativity of the metals. The enhancement on phenanthrene adsorption was positively correlated to the amount of adsorbed metals. Although Cd2+ is a softer Lewis acid, Pb2+ displayed a more significant effect as it was adsorbed to a greater extent on the soil surfaces. Thus, density of cation accumulation appears to be more influential than metal softness in enhancing phenanthrene adsorption. Moreover, with a portion of organic matter removed by heating at 550 °C, there was a stronger enhancement of phenanthrene adsorption by coexisting Pb2+, indicating an increasingly dominant mechanisms associated with Pb2+ at a lower organic matter content. Similar enhancement phenomenon was observed on bentonite and kaolinite, probably resulting from the cation-π bonding between the adsorbed soft metal cations and the aromatic ring of phenanthrene in solution. The desorption experiments further suggested that the bonding of phenanthrene adsorption was strengthened in the presence of Pb2+ and that a larger proportion of adsorbed phenanthrene remained on the soils (residual fraction) even after sequential methanol extractions. Further spectroscopic analyses and surface characterization are required to provide direct evidence of the formation and relative significance of cation-π bond for phenanthrene adsorption.  相似文献   

7.
Wang HC  Liang HS  Chang MB 《Chemosphere》2011,82(8):1090-1095
In this study, we examined the experimental catalytic oxidation of gaseous monochlorobenzene (MCBz) with O3 over Fe2O3 in a packed bed reactor to investigate the feasibility of economical low temperature decomposition at a high space velocity (SV). We investigated the effects of several reaction parameters (temperature, O3 concentration, and SV) on the MCBz oxidation. At 150 °C, the conversion of MCBz over Fe2O3 in the absence of O3 was only 3%; it increased to 91% over Fe2O3 in the presence of 1200 ppm of O3 at a high SV of 83 s−1. A long-term operation study revealed that the conversion of MCBz was stable for more than 96 h. In the steady state, the carbon and chlorine balances were 88% and 86%, respectively. Applying a Langmuir-Hinshelwood kinetic model, we estimated an activation energy of 16.7 kJ mol−1 for MCBz oxidation over Fe2O3 in the presence of O3.  相似文献   

8.
Bajda T 《Chemosphere》2011,83(11):1493-1501
Due to its relatively low solubility, mimetite Pb5(AsO4)3Cl may control Pb and As(V) solution levels at a low value in contaminated soils. The time-dependent dissolution of mimetite by low-molecular-weight organic acids (LMWOAs) such as acetic, lactic, citric, and ethylene diamine tetra-acetic acid (EDTA) was determined. At pH 3.5, the presence of citric acid or EDTA significantly increases the solubility of mimetite while acetic or lactic acids show little effect. The effect of all organic anions on the dissolution of mimetite increased with the increase in solution pH. The rate of mimetite dissolution depended on the kind and concentration of organic solvents in the sequence rEDTA > rlactate > racetate > rcitrate. Soluble Pb and As(V) released in LMWOAs and EDTA were higher than the WHO guideline value for these elements in drinking water (10 μg As(V) L−1, 10 μg Pb L−1). This suggests that soil organic acids in rhizosphere can potentially liberate Pb and As(V) from mimetite in contaminated soils.  相似文献   

9.
Gotoh Y  Iwata G  Choh K  Kubota M  Matsuda H 《Chemosphere》2011,85(4):637-642
A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours.It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K.It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed.  相似文献   

10.
The supercritical water oxidation (SCWO) of industrial tannery sludge was investigated to understand the simultaneous destruction of organic pollutants and recovery of high content chromium. Experiments were performed in a batch reactor at temperatures of 350–500 °C, reaction time of 150–300 s and different oxygen ratios, to exhibit the effect of operation conditions. Results showed that removal efficiency of chemical oxygen demand (COD) increased with higher temperature, larger oxidant amount and reaction time; a maximum value of 96% was obtained. Meanwhile, destruction yield was much higher under supercritical conditions than that in subcritical water. In addition, removal efficiency of Cr from sludge reached more than 98% under all conditions; higher temperature played a positive role. Further, leaching toxicity tests of heavy metals in solid products were conducted based on toxicity characteristic leaching procedure. All heavy metals except nickel showed a greatly reduced leaching toxicity through their stabilization. The chromium oxide recovered in ash was amorphous below 550 °C, so that the structure of Cr could not be identified by X-ray diffraction pattern. Special attention should be paid on nickel as its leaching toxicity increased due to the corrosion of reactor surface under severe reaction conditions.  相似文献   

11.
Leaching of copper and zinc from spent antifouling paint particles   总被引:1,自引:0,他引:1  
Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g−1 and 110 mg g−1 of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu2O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 °C than 19 °C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues.  相似文献   

12.
The degradation of paracetamol in aqueous solutions in the presence of hydrogen peroxide was carried out by photochemistry, electrolysis and photoelectrolysis using modified 100 pores per inch reticulated vitreous carbon electrodes. The electrodes were coated with catalysts such as TiO2 and CuO/TiO2/Al2O3 by electrophoresis followed by heat treatment. The results of the electrolysis with bare reticulated vitreous carbon electrodes show that 90% paracetamol degradation occurs in 4 h at 1.3 V vs. SCE, forming intermediates such as benzoquinone and carboxylic acids followed by their complete mineralisation. When the electrolysis was carried out with the modified electrodes such as TiO2/RVC, 90% degradation was achieved in 2 h while with CuO/TiO2/Al2O3/RVC, 98% degradation took only 1 h. The degradation was also carried out in the presence of UV reaching 95% degradation with TiO2/RVC/UV and 99% with CuO/TiO2/Al2O3/RVC/UV in 1 h. The reactions were followed by spectroscopy UV-Vis, HPLC and total organic carbon analysis. These studies show that the degradation of paracetamol follows a pseudo-first order reaction kinetics.  相似文献   

13.
The ability of thermal activated peroxydisulfate (PS) of mineralizing phenol at 70 °C from contaminated waters is investigated. Phenol in concentrations of 10−4 to 5 × 10−4 M is quantitatively depleted by 5 × 10−3 to 10−2 M activated PS in 15 min of reaction. However, mineralization of the organic carbon is not observed. Instead, an insoluble phenol polymer-type product is formed. A reaction mechanism including the formation of phenoxyl radicals and validated by computer simulations is proposed. High molecular weight phenolic products are formed by phenoxyl radical H-abstraction reactions. This is not the case for the room temperature degradation of phenol by sulfate radicals where sulfate addition to the aromatic ring mainly leads to the generation of hydroxycyclohexadienyl radicals leading to hydroxybenzenes and oxidized open chain products. Therefore, a change in the reaction mechanism is observed with increasing temperature, and thermal activation of PS at 70 °C does not lead to the mineralization of phenol. Thus PS activation at 70 °C may be considered a potential method to reduce the load of phenol in polluted waters by polymerization.  相似文献   

14.
Metal oxide nanomaterials have exhibited toxicity to a variety of aquatic organisms, especially microbes and invertebrates. To date, few studies have evaluated the toxicity of metal oxide nanomaterials on aquatic vertebrates. Therefore, this study examined effects of ZnO, TiO2, Fe2O3, and CuO nanomaterials (20-100 nm) on amphibians utilizing the Frog Embryo Teratogenesis Assay Xenopus (FETAX) protocol, a 96 h exposure with daily solution exchanges. Nanomaterials were dispersed in reconstituted moderately hard test medium. These exposures did not increase mortality in static renewal exposures containing up to 1000 mg L−1 for TiO2, Fe2O3, CuO, and ZnO, but did induce developmental abnormalities. Gastrointestinal, spinal, and other abnormalities were observed in CuO and ZnO nanomaterial exposures at concentrations as low as 3.16 mg L−1 (ZnO). An EC50 of 10.3 mg L−1 ZnO was observed for total malformations. The minimum concentration to inhibit growth of tadpoles exposed to CuO or ZnO nanomaterials was 10 mg L−1. The results indicate that select nanomaterials can negatively affect amphibians during development. Evaluation of nanomaterial exposure on vertebrate organisms are imperative to responsible production and introduction of nanomaterials in everyday products to ensure human and environmental safety.  相似文献   

15.
Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2O2 propagations (CHP—modified Fenton’s reagent). The two soils were first evaluated for the potential for in situ treatment based on two criteria: (1) temperature (<40 °C after CHP reagent addition), and (2) hydrogen peroxide longevity (>24 h). In situ CHP remediation was more applicable to the Fletcher soil, while the Merrimack soil was better suited to ex situ treatment based on temperature increases and hydrogen peroxide lifetimes. Using the highest hydrogen peroxide concentrations appropriate for in situ treatment in each soil, PCB destruction was 94% in the Fletcher soil but only 48% in the Merrimack soil. However, 98% PCB destruction was achieved in the Merrimack soil using conditions more applicable to ex situ treatment (higher hydrogen peroxide concentrations with temperatures >40 °C). Analysis of degradation products by gas chromatography/mass spectroscopy showed no detectable chlorinated degradation products, suggesting that the products of PCB oxidation were rapidly dechlorinated and degraded. The results of this research document that the two PCB-contaminated soils studied can be effectively treated using aggressive CHP conditions, and that such a detailed bench study provides important information before implementing field treatment.  相似文献   

16.
Fe-Co3O4 thin film with different amounts of Fe have been used for the electro-oxidation of phenol in alkaline medium at room temperature. The electrodes were prepared by coating stainless steel supports with successive layers of the oxides, obtained by thermal decomposition at 673 K. The electrolysis was carried out at constant potential and the phenol disappearance, during the electrolysis, was monitored by UV-Vis absorbance measurements between 250 and 500 nm. After 3 h of electrolysis, the intermediates were identified by comparing the HPLC data and UV-Vis spectra to those from pure standards. The results indicate that the same oxidation products are formed on the different prepared electrodes, namely the decomposition products of phenol such as benzoquinone, hydroquinone and cathecol in basic medium. Simulated results show clearly the decrease of the amount of phenolic species with the electrolysis time. An enhancement of the phenol removal is observed with the presence of iron in the oxide. Under the operating conditions, around 30% of the initial phenol has been removed at ca. 3 h and the complete degradation is obtained after 54 h of electrolysis, when Fe-Co3O4 thin film with 10% of Fe is used as anode.  相似文献   

17.
Ham JE  Wells JR 《Chemosphere》2011,83(3):327-333
Indoor environments are dynamic reactors where consumer products (such as cleaning agents, deodorants, and air fresheners) emit volatile organic compounds (VOCs) that can subsequently interact with indoor oxidants such as ozone (O3), hydroxyl radicals, and nitrate radicals. Typically, consumer products consist of mixtures of VOCs and semi-VOCs which can react in the gas-phase or on surfaces with these oxidants to generate a variety of oxygenated products. In this study, the reaction of a pine-oil cleaner (POC) with O3 (100 ppb) on a urethane-coated vinyl flooring tile was investigated at 5% and 50% relative humidity. These results were compared to previous α-terpineol + O3 reactions on glass and vinyl surfaces. Additionally, other terpene and terpene alcohol mixtures were formulated to understand the emission profiles as seen in the POC data. Results showed that the α-terpineol + O3 reaction products were the prominent species that were also observed in the POC/O3 surface experiments. Furthermore, α-terpineol + O3 reactions generate the largest fraction of oxygenated products even in equal mixtures of other terpene alcohols. This finding suggests that the judicial choice of terpene alcohols for inclusion in product formulations may be useful in reducing oxidation product emissions.  相似文献   

18.
Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H2PO4)2] or sodium phosphate [Na3PO4]) reacts with lead (PbSO4 or PbCl2) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 °C to −20 °C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO4 and Na3PO4 were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate.  相似文献   

19.
Huang YT  Hseu ZY  Hsi HC 《Chemosphere》2011,84(9):1244-1249
Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature >400 °C successfully lowered the Hg content to <20 mg kg−1. The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550 °C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction.  相似文献   

20.
In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO3), tin (IV) oxide (SnO2) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na2S2O8) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t½) ranged from 8 to 27 min (t30W = 0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na2S2O8 system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号