首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Due to the unique antibacterial activities, silver nanoparticles (AgNPs) have been extensively used in commercial products. Anthropogenic activities have released considerable AgNPs as well as highly toxic silver ion (Ag+) into the aquatic environment. Our recent study revealed that ubiquitous natural organic matter (NOM) could reduce Ag+ to AgNP under natural sunlight. However, the toxic effect of this process is not well understood. In this work, we prepared mixture solution of Ag+ and AgNPs with varied Ag+% through the sunlight-driven reduction of Ag+ by NOM and investigated the acute toxicity of the solutions on Daphnia magna. Formation of AgNPs was demonstrated and characterized by comprehensive techniques and the fraction of unconverted Ag+ was determined by ultrafiltration-inductively coupled plasma mass spectrometry determination. The formation of AgNPs enhanced significantly with the increasing of solution pH and cumulative photosynthetically active radiation of sunlight. The toxicity of the resulting solution was further investigated by using freshwater crustacean D. magna as a model and an 8 hr-median lethal concentration (LC50) demonstrated that the reduction of Ag+ by NOM to AgNPs significantly mitigated the acute toxicity of silver. These results highlight the importance of sunlight and NOM in the fate, transformation and toxicity of Ag+ and AgNPs, and further indicate that the acute toxicity of AgNPs should be mainly ascribed to the dissolved Ag+ from AgNPs.  相似文献   

2.
Tunnel wash waters characterize all waters that run off after washing procedures of tunnels are performed. These waters represent a wide spectrum of organic and inorganic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and toxic metals. Removal of such contaminants from water runoff was investigated using laboratory tests after washing procedure was performed on two road tunnels in eastern Norway (Hanekleiv and Bragernes). Due to diverse character of both, treatment media and treated wash waters, the whole investigation was divided into two separate laboratory experiments. The treatment efficiencies were established based on the levels of concentrations and reductions of the measured contaminants in the effluents released from the tested media. In the first part of the article, the contents of nonpolar oil (NPO), 16 individual PAHs, and total PAHs (∑PAH16) are described. This part revealed that the combination of two organic sorbent materials provided the highest treatment efficiency for wash waters released from the road tunnel and from electrostatic filters. The greatest reduction levels reached 97.6% for NPO, 97.2% for benzo[a]pyrene, and 96.5% for the total PAHs. In the second part of the article, the concentrations and the removal rates of toxic metals are reported  相似文献   

3.
铬渣污染土壤清洗剂筛选研究   总被引:3,自引:1,他引:2  
以3种不同质地的铬渣污染土壤(A土,B土和C土)为研究对象,探讨了4种清洗剂对污染土壤中Cr的清洗效果,并采用欧盟BCR三步顺序提取法,研究了不同清洗剂对土壤中各形态Cr的去除效果. 结果表明:同一污染土壤上4种清洗剂对总Cr的去除效果差别不大;低浓度清洗剂对Cr(Ⅵ)和Cr(Ⅲ)的去除效果与去离子水相当;高浓度清洗剂效果优于低浓度清洗剂,且高浓度清洗剂洗出的总Cr主要以Cr(Ⅲ)为主. 同一清洗剂对3种污染土壤的清洗效果为C土>B土>A土. 去离子水主要去除酸可提取态Cr;EDTA-Na2对酸可提取态和可还原态Cr去除效果较好;柠檬酸去除的是酸可提取态、可还原态和可氧化态Cr;而HCl对各形态Cr都有所去除. 因此,对于酸可提取态和可氧化态Cr含量较高的A土,柠檬酸是最佳清洗剂;而对于酸可提取态Cr占优势的B土和C土,去离子水是最佳清洗剂.   相似文献   

4.
再生水暴露剂量确定是再生水洗车利用健康风险评价的前提和制定再生水水质标准的重要依据.本文研究了手工洗车和龙门式洗车机洗车过程中再生水对典型人群的暴露剂量特征.通过现场调研,确定了洗车现场的典型暴露人群及其暴露时间分布,其中手工洗车工人的清洗耗时和擦车耗时分别平均为4.8 min和8.4 min,龙门式洗车机工人的冲洗浮土耗时、洗车机清洗耗时和擦车耗时分别平均为1.5 min、2.5 min和8.0 min.利用重量法确定了洗车现场空气中的再生水水雾浓度分布(即空气含水量增加值),结果表明手工洗车的水雾浓度为2.0 mg·L-1,洗车机过程中冲洗浮土现场和龙门式洗车机清洗现场的浓度分别为1.3 mg·L-1和3.2 mg·L-1.根据典型暴露人群的呼吸速率,得出再生水的暴露剂量.结果表明,在各种典型人群中,手工洗车清洗工的再生水日暴露剂量最大,高达15.5 mL·d-1.  相似文献   

5.
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.  相似文献   

6.
氧化铜纳米颗粒(CuO NPs)可以通过农药和肥料施用、意外泄露或污水灌溉进入As污染农田土壤,从而对土壤环境因子和As生物有效性产生影响.本试验选取两种不同类型土壤(安徽宿松黄棕壤和黑龙江海伦黑土)进行人工As污染,添加不同浓度的CuO NPs,探究90 d淹水-落干过程中CuO NPs对As污染农田环境因子和As生物有效态的影响.结果表明,CuO NPs进入土壤后12 h内快速溶解产生Cu2+,且在黄棕壤中的溶解速度较黑土迅速.CuO NPs可在短时间内降低土壤pH,提高土壤氧化还原电位(Eh),降低土壤电导率(EC),但随着培养时间增加土壤EC逐渐提高.一定时间内CuO NPs在两种类型土壤中可降低51.0%~82.5%土壤浸出液中的As和15.7%~66.5%的As生物有效性,减少淹水时Fe (II)的含量.但在土壤落干时期产生一定的“纳米效应”从而促进了Fe (II)的产生.研究表明,CuO NPs进入As污染农田改变了土壤环境因子,一定时间内降低了土壤As生物有效性.  相似文献   

7.
邱宇  卢金锁  王社平 《环境科学学报》2017,37(11):4109-4118
利用菌株Pantoea sp.IMH实现了硒化银纳米颗粒的生物合成,同时,结合高分辨透射电镜(HRTEM)、能谱成像(EDX-mapping)、X射线粉末衍射(XRD)等多种表征手段对硒化银纳米颗粒进行了表征分析.结果表明,所合成的硒化银纳米颗粒的粒径为10~20 nm,其纳米颗粒的晶面间距为0.225 nm,对应于Ag2Se的(031)晶面.所合成的纳米颗粒的衍射环对应的标准Ag2Se晶面为(013)、(031)和(113)面.XRD结果表明,纳米颗粒的晶面为(111)、(112)和(004)晶面,说明菌株IMH能够合成纳米硒化银晶体.通过以不同电性的染料分子亚甲基蓝(阳性)、日落黄(阴性)、靛蓝(中性)作为目标分子进行吸附去除应用探索,发现硒化银纳米颗粒对阳性和中性染料分子有良好的吸附去除效果.这是由于硒化银纳米颗粒表面带有负电荷(Zeta电位分别为-11.8 m V(p H=5)、-13.0 m V(p H=7)、-13.0 m V(p H=9)).本研究为硒化银纳米颗粒的生物合成提供了新思路,拓展了硒化银纳米颗粒的合成方法.  相似文献   

8.
城市河道水中含有微量药物及个人护理品(pharmaceuticals and personal care products,PPCPs),具有一定生态风险.本文系统考察了两种河道水旁路处理工艺(混凝沉淀-曝气生物滤池-超滤-臭氧和混凝沉淀-膜生物反应器-臭氧)对30种高检出PPCPs的去除效果,并通过沿程去除率调查和风险商模型分别评价了目标PPCPs的降解机制及整体生态风险的降低情况.结果表明,两种旁路处理工艺对各目标PPCPs均有较好去除效果;其中四环素类抗生素及咖啡因在生物段去除率超过90%,而磺胺类及氟喹诺酮类抗生素及其他药物仅在进水化学需氧量较高和较高水温条件下具有较好去除效果,但臭氧深度处理可对其进行有效削减;经全流程处理后各PPCPs累积去除率均可达92.5%以上.旁路处理可有效降低目标PPCPs生态风险,经处理后风险商值由原水的12.6降至总出水的0.2(风险阈值RQtot=1),去除率达98.4%.  相似文献   

9.
杀菌功能载银活性炭的NaBH_4还原法制备及其表征   总被引:1,自引:1,他引:0  
王自强  刘守新 《环境科学》2010,31(9):2129-2133
通过NaBH4还原法制备了银缓释杀菌功能载银活性炭(Ag/AC),研究了其对大肠杆菌(E.coil)的杀灭性能和抗银流失性能.以低温液氮吸附测定活性炭的比表面积,以扫描电子显微镜(SEM)-X射线能谱仪(EDS)分析Ag/AC表面形态以及Ag的含量和分布,以X射线衍射(XRD)观察Ag/AC晶体结构.结果表明,银以单质形式负载在活性炭上.活性炭的载银量、比表面积、银颗粒的粒径及分布取决于AgNO3溶液浓度.在不同AgNO3溶液浓度条件下,银的晶核形成和生长机制发生改变.随着AgNO3溶液浓度的增加,所制备Ag/AC表现出由无活性、抑菌到杀菌活性的变化规律.载银量为2.70%(质量分数)时,Ag/AC能在90 min内杀灭2×106 CFU/mL浓度的大肠杆菌,且在水中振荡600 h的银流失量为21.1%.在保持较高杀菌活性前提下,可以实现银的缓释.  相似文献   

10.
Degradation of organic contaminants with simultaneous recycling of Ag+ from silver-containing organic wastewater such as photographic effluents is desired. Although photoelectrocatalysis (PEC) technology is a good candidate for this type of wastewater, its reaction kinetics still needs to be improved. Herein, peroxymonosulfate (PMS) was employed to enhance the PEC kinetics for oxidation of phenol (PhOH) at the anode and reduction of Ag+ at the cathode. The degradation efficiency of phenol (PhOH, 0.1 mmol/L) was increased from 42.8% to 96.9% by adding 5 mmol/L PMS at a potential of 0.25 V. Meanwhile, the Ag (by wt%) deposited on the cathode was 28.1% (Ag2O) in PEC process, while that of Ag (by wt%) was 69.7% (Ag0) by adding PMS. According to the electrochemistry analysis, PMS, as photoelectrons acceptor, enhances the separation efficiency of charges and the direct h+ oxidation of PhOH at the photoanode. Meantime, the increasing cathode potential avoided H2 evolution and strongly alkaline at the surface of cathode, thus enabling the deposition of Ag+ in the form of metallic silver with the help of PMS. In addition, PMS combined with PEC process was effective in treating photographic effluents.  相似文献   

11.
With the increase in silver(Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles(Ag NPs) and silver ions(Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of Ag NPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both Ag NPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than Ag NPs under the same concentrations. To understand the toxicity of Ag NPs at a cellular level, reactive oxygen species(ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of Ag NPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of Ag NPs to Ag ions; fixed the Ag NPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the Ag NPs concentration.Exposure to Ag NPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity(for a fixed Ag NPs concentration of 5 mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. Ag NPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from Ag NPs under the single and coexistence conditions. Further works are needed to consider this potential for Ag NPs and Ag ions toxicity across a range of environmental conditions.Environmental Significance Statement: As silver nanoparticles(Ag NPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the Ag NPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of Ag NPs and silver ions(Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of Ag NPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.  相似文献   

12.
Changes in solution chemistry and transport conditions can lead to the release of deposited MnO2 nanoparticles from a solid interface, allowing them to re-enter the aqueous environment. Understanding the release behavior of MnO2 nanoparticles from naturally occurring surfaces is critical for better prediction of the transport potential and environmental fate of MnO2 nanoparticles. In this study, the release of MnO2 nanoparticles was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D), and different environmental surface types, solution pH values and representative macromolecular organics were considered. MnO2 nanoparticles were first deposited on crystal sensors at elevated NaNO3 concentrations before being rinsed with double-deionized water to induce their remobilization. The results reveal that the release rate of MnO2 depends on the surface type, in the decreasing order: SiO2 > Fe3O4 > Al2O3, resulting from electrostatic interactions between the surface and particles. Moreover, differences in solution pH can lead to variance in the release behavior of MnO2 nanoparticles. The release rate from surfaces was significantly higher at pH 9.8 that at 4.5, indicating that alkaline conditions were more favorable for the mobilization of MnO2 in the aquatic environment. In the presence of macromolecular organics, bovine serum albumin (BSA) can inhibit the release of MnO2 from the surfaces due to attractive forces. In presence of humic acid (HA) and sodium alginate (SA), the MnO2 nanoparticles were more likely to be mobile, which may be associated with a large repulsive barrier imparted by steric effects.  相似文献   

13.
含有多溴联苯(PBBs)和多溴二苯醚(PBDEs)的废旧家电,在拆解利用过程中这两类物质若释放到环境中会导致环境和职业卫生危害.通过检测湖北省5家定点拆解企业拆解下来的塑封料、含铅玻璃、废线路板(WPB)、填充物和废塑料5类拆解件及拆解车间废气、环境空气、降尘样、飞灰4个不同环境介质中的PBBs和PBDEs含量和组分,了解拆解零部件中该类污染物的存在现状,并评估作业场所的环境状况及作业工人的职业暴露风险.结果表明,拆解件中仅10.7%的废线路板中检出PBDEs,含量为9955~26519 mg·kg-1.各车间环境介质样品中的PBBs成分以PPB-209为主,PBBs最高含量为0.291 mg·g-1,PBDEs以BDE-209为主,PBDEs含量最高的是洗衣机拆解车间和电视机/电脑拆解车间.环境空气中PBDEs暴露量最高和最低的分别是洗衣机拆解车间和冰箱/空调拆解车间,应加强洗衣机拆解车间环境空气的改善和监控.  相似文献   

14.
利用生化出水的碱度吸收二氧化硫,去除率高,能耗低,不产生二次污染,根据燃煤民厂的特点,又做以下强化研究,一.吸收液用碳酸钙粉中和后再次吸收,处理能力可提高2.5倍以上,二.吸收液中灰渣,既解决中渣耗水和结垢问题及又使二者都得到中和.三,生化过程投中碳酸钙粉可提高碱度80%以上,强化后工艺的运行和投资费用较低。  相似文献   

15.
铝系混凝剂优势形态分析及其混凝特性   总被引:1,自引:0,他引:1  
聚合氯化铝(PACl)是常用的水处理混凝剂,在应用过程中通常表现出比传统铝盐更为优异的效果.研究表明,这种优异性能主要得益于其特殊的组成,特别是高分子聚合物Al13和Al30独特的物化特性.Al13和Al30是铝离子水解过程中的中间产物,在地球科学和环境化学等领域有着重要的研究价值.于水处理而言,二者的结构和分子特性是研究者关注的重点,大量研究基于此展开,很多重要的发现为实际应用奠定了基础.基于对PACl及其组成性质的研究,本文对PACl的混凝特性及其优势形态分子的分析进行了综合阐述.  相似文献   

16.
Tunnel wash waters characterize all waters that run off after washing procedures of tunnels are performed.These waters represent a wide spectrum of organic and inorganic pollutants,such as polycyclic aromatic hydrocarbons(PAHs)and toxic metals.Removal of such contaminants from water runoff was investigated using laboratory tests after washing procedure was performed on two road tunnels in eastern Norway(Hanekleiv and Bragernes).Due to diverse character of both,treatment media and treated wash waters, the...  相似文献   

17.
Use of enzymes in textile processes has many advantages as far as the environmentally friendly processes are concerned. These advantages include water and energy savings, less chemical use, less fabric damage, mild and environmentally friendly process conditions. In this work, C.I. Reactive Yellow 15, C.I. Reactive Red 21 and C.I. Reactive Blue 19 were used to dye untreated woven cotton fabric in a laboratory scale dyeing machine, on a pilot scale jig and on a pilot scale winch by using a single bath combined process, in which various enzymes, namely, amylase, pectinase, and catalase were employed. This new process was named as the “Rapid Enzymatic Single-bath Treatment” (REST), since it was completed almost in half of the conventional dyeing time, and all of the stages, namely, desizing, scouring, bleaching and dyeing were carried out in a single bath without replacing the process water with fresh water until the end of the dyeing. In the REST process, the untreated, starch-sized fabric was first desized by amylase enzyme, and this was followed by a pectinase treatment in the same bath. The fabric was then bleached by H2O2 in the same bath, and after the hydrogen peroxide bleaching; the catalase enzyme was added to the bath to remove H2O2 residues before reactive dyeing. Without carrying out intermediate washings/rinsings between these processes, the reactive dyeing was carried out in a conventional way in the same bath, and finally, the fabric was taken from the bath and washed out. The colour yield was compared with the dyeings which were carried out conventionally in separate baths. Finally, the REST has many benefits in terms of water saving, reduced process time and energy consumptions compared to the conventional preparatory and dyeing process of cotton fabrics.  相似文献   

18.
选取嘉兴市82家印染企业,针对棉、毛、化纤3种典型原材料,研究了织物、纱线、纤维产品在前处理、染色和印花等工段的废水产生量和水质,基于产污强度算法估算了各印染工序的废水产污强度.结果表明:棉、毛、化纤织物印染废水总产生强度分别为90.21、206.02、109.66 L·kg-1织物,漂洗为废水主要产生工序.印染各工段化学需氧量(COD)产生强度普遍较高,特别是棉、化纤织物前处理工段COD产生强度高达136.98和131.67 g·kg-1织物.印染部分工序氮、磷产污强度高,如棉、毛、化纤织物的洗网废水总氮(TN)产生强度为4.98、1.25、2.21 g·kg-1织物,棉纤维、毛织物和毛纱线的染色工序总磷(TP)产生强度为0.28、0.18、0.18 g·kg-1产品,还有棉、化纤的洗网废水TP产生强度为0.30、0.15 g·kg-1产品.利用产污强度及治理设施削减系数估算得出的印染企业各废水污染物排放量,与污染物在线监测数据相比较,相对误差低于30%;将本研究所得各产污强度与第二次全国污染源普查产污系数比较,除印花工段外,两者相对偏差均低于20%.本研究获得的印染行业各产污节点特征和产污强度,可为印染行业的环境精细化管理和产污节点管控提供数据支撑.  相似文献   

19.
Photocatalytic ozonation of phenol and oxalic acid (OA) was conducted with a Ag^+/TiO2 catalyst and different pathways were found for the degradation of different compounds. Ag^+ greatly promoted the photocatalytic degradation of contaminants due to its role as an electron scavenger. It also accelerated the removal rate of OA in ozonation and the simultaneous process for its complex reaction with oxalate. Phenol could be degraded both in direct ozonation and photolysis, but the TOC removal rates were much higher in the simultaneous processes due to the oxidation of hydroxyl radicals resulting from synergetic effects. The sequence of photo-illumination and ozone exposure in the combined process showed quite different effects in phenol degradation and TOC removal. The synergetic effects in different combined processes were found to be highly related to the properties of the target pollutants. The color change of the solution and TEM result confirmed that Ag+ was easily reduced and deposited on the surface of Tit2 under photo-illumination, and dissolved again into solution in the presence of ozone. This simple cycle of enrichment and distribution of Ag^+ can greatly benefit the design of advanced oxidation processes, in which the sequences of ozone and photo-illumination can be varied according to the needs for catalyst recycling and the different properties of pollutants.  相似文献   

20.
Is the aggregation of silver nanoparticles in environmental waters a silver lining? The answer is not simple. Clearly, however, the aggregation and photo-transformation of AgNPs are complicated and could be more significant than previously thought. The difference in the water chemistry that controls the aggregation and photo-transformation of AgNPs results in the varying behavior and fate of AgNPs among different water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号