首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li P  Dong W  Zhang R  Huang L  Ye Z  Hou H 《Chemosphere》2008,71(8):1494-1501
The microscopic reaction mechanisms of diphenylether (DPE) and 4-bromodiphenylether (4-BrDPE) with nitrous acid (HNO(2)) in the absence of O(2) have been explored by the 355nm laser flash photolysis. It was proposed that OH radical, from the photolysis of HNO(2), added to DPE forms the C(12)H(10)O-OH adduct while added to 4-BrDPE forms the 4-BrDPE-OH and 4-BrOH-DPE adducts. The first-order decay rate constants of the C(12)H(10)O-OH adduct, 4-BrDPE-OH adduct and 4-BrOH-DPE adduct were measured to be (1.86+/-0.14)x10(5)s(-1), (2.19+/-0.04)x10(5)s(-1) and (1.56+/-0.03)x10(5)s(-1), respectively. The final photolysis products of DPE and HNO(2) identified by GC/MS analysis were phenol, o-hydroxydiphenylether, p-hydroxydiphenylether and p-nitrodiphenylether, while the final photolysis product of 4-BrDPE and HNO(2) identified by LC/MS analysis was mainly the dimer.  相似文献   

2.
Copper compounds have been intentionally introduced into water bodies as aquatic plant herbicides, algicides and molluscicides. Copper-based fertilizers and fungicides have been widely used in agriculture as well. Despite the fact that copper is an essential element for all biota, elevated concentrations of this metal have been shown to affect a variety of aquatic organisms. Nonetheless, comparative studies on the susceptibility of different freshwater species to copper compounds have seldom been performed. This study was conducted to compare toxicity of copper-based pesticides (copper oxychloride, cuprous oxide and copper sulfate) to different freshwater target (Raphidocelis subcapitata, a planktonic alga and Biomphalaria glabrata, a snail) and non-target (Daphnia similis, a planktonic crustacean and Danio rerio, a fish) organisms. Test water parameters were as follows: pH = 7.4 +/- 0.1; hardness 44 +/- 1 mg/l as CaCO3; DO 8-9 mg/l at the beginning and > 4 mg/l at the end; temperature, fish and snails 25 +/- 1 degrees C, Daphnia 20 +/- 2 degrees C, algae 24 +/- 1 degrees C. D. similis (immobilization), 48-h EC50s (95% CLs) ranging from 0.013 (0.011-0.016) to 0.043 (0.033-0.057) mg Cu/l, and R. subcapitata (growth inhibition), 96-h IC50s from 0.071 (0.045-0.099) to 0.137 (0.090-0.174) mg Cu/l, were the most susceptible species. B. glabrata (lethality), 48-h LC50s from 0.179 (0.102-0.270) to 0.854 (0.553-1.457) mg Cu/l, and D. rerio (lethality), 48-h LC50s 0.063 (0.045-0.089), 0.192 (0.133-0.272) and 0.714 (0.494-1.016) mg Cu/l, were less susceptible than Daphnia to copper-based pesticides. Findings from the present study therefore suggest that increased levels of copper in water bodies is likely to adversely affect a variety of aquatic species.  相似文献   

3.
This paper evaluates the relationships between copper species in sediments and accumulation by the purple clam (Hiatula diphos) and venus clam (Gomphina aeguilatera) collected from the field and culture (aquaculture) ponds in the polluted coastal area of Lukang, Taiwan. Sediment was sampled along with the molluscs, including oysters (Crassostrea gigas), purple clams (Hiatula diphos), rock-shells (Thais clavigera), venus clams (Gomphina aeguilatera), and hard clams (Meretrix lusoria), from two unique environments of Lukang during the period from August 1993 to July 1994. The data indicate that the total copper concentrations in sediments from culture ponds (185 microg g(-1)) was higher than those of the field (44.0 microg g(-1)). Copper species in sediments were analyzed by a sequential leaching technique. Results show that concentrations of various copper species in the sediments are in the range of 1.14 +/- 0.59 to 13.2 +/- 22.4 microg g(-1) and 0.36 +/- 0.24 to 133 +/- 36.7 microg g(-1) for the two environments, respectively. Also the exchangeable copper in sediment from culture ponds was 15 times higher than that from the field. In addition, the sum of exchangeable and copper carbonates had the highest percentages of copper in both the pond sediment (86.6 %) and the field sediment (50.7 %). Maximum copper concentrations (309 +/- 35.1 microg g(-1)) in oysters were much higher than those in the other benthic organisms by about 4-127 times. Similarly, the data also showed that copper concentrations in Thais clavigera were 12-32 times higher than those in other benthic organisms. Copper concentrations in various benthic organisms differed significantly (p < 0.05) from that in Thais clavigera. This capacity makes Thais clavigera a potential candidate for monitoring copper in marine sediments. In terms of copper species, the best correlation was generally obtained between copper carbonates in sediments and copper concentrations in Hiatula diphos (r = 0.886*). A strong multiple regression correlation (p < 0.05, r2 = 0.7894) also indicates that the copper carbonates may dominate as the available form of copper to Hiatula diphos from various environments in the Lukang coastal area under natural physicochemical conditions.  相似文献   

4.
Two fulvic acid samples isolated from Suwannee river (International Humic Substance Society) and Feeitsuey reservoir were subjected to gel filtration chromatography (GFC) for molecular size fractionation. The GFC-eluted samples were separated into three groups corresponding to the molecular weight ranges: < 220, 220-1000, and 1000-4000. Fluorescence quenching techniques were employed for determining the conditional stability coefficient and kinetic parameters of copper complexation with the three fractions of fulvic acids. Experimental conditions were pH 6, 5 x 10(-5)m total copper and 5 mg C litre(-1) of fulvic acids. The conditional stability coefficients of the fulvic acid fractions were in the order of 0.9-3.3 x 10(5)m(-1), and the forward and reverse rate constants were in the order of 6.9-12.4 x 10(3)m(-1) s(-1) and 3.5-8.0 x 10(-2) s(-1). Information could be useful in modelling copper transport in the hydrosphere.  相似文献   

5.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   

6.
The rate coefficient for the reaction of nitrite with hypochlorite and hypochlorous acid has been studied using spectrophotometric measurements. The reaction rate has been determined in a wide range of H(+) concentration (5< or =-log[H(+)]< or =11). The kinetics were carried out as a function of NO(2)(-), H(+) and total hypochlorite ([HOCl](total)=[HOCl]+[ClO(-)]+[ClNO(2)]) concentrations. The observed overall rate law is described by: -d[HClO](T)dt=[a[NO(2)(-)](2)+b[NO(2)(-)]][H(+)](2)c+d[H(+)]+e[NO(2)(-)][H(+)](2)[HOCl](total)At T=298 K and in Na(2)SO(4) at an ionic strength (I=1.00 M), we obtained using a nonlinear fitting procedure: a=(1.83+/-0.36)x10(7) s(-1), b=(1.14+/-0.23)x10(5) Ms(-1), c=(1.12+/-0.17)x10(-13) M, d=(1.43+/-0.29)x10(-6) M(2) and e=(1.41+/-0.28)x10(3) M where the errors represent 2sigma. According to the overall rate law, a/b=k(1)/k(3), b/e=k(3), c=K(w), d/c=K(a), d=K(a)K(w) and e=K(1)K(a). In Na(2)SO(4) at an ionic strength (I=1.00 M), the values of K(1) and K(a) are (1.1+/-0.1)x10(-4) and 1.28x10(7) M(-1), respectively. A mechanism is proposed for the NO(2)(-) oxidation which involves the reversible initial step: NO(2)(-)+HOCl left harpoon over right harpoon ClNO(2)+OH(-) (K(1)), while ClNO(2) undergoes the two parallel reactions: attack by NO(2)(-) (k(1)) and hydrolysis (k(3)). ClNO(2) and N(2)O(4) are proposed as important intermediates as they control the mechanism. The rate coefficients k(1) and k(3) have been determined at different ionic strengths in NaCl and Na(2)SO(4). The influence of the ionic strength and ionic environment has been studied in this work.  相似文献   

7.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

8.
The apparent water solubility of pentachlorophenol was measured at pH=6 and at 25 degrees C in pure water, aqueous solutions of three salts (NaCl, KNO(3) and CaCl(2) at 0.010, 0.10 and 1.0M) and in aqueous solutions of three fulvic acids samples extracted from a natural soil (sFA), composted sewage sludge (csFA) and composted livestock's material (lsFA). A solubility enhancement method was developed for the measurement of partition coefficients (K(oc), L/kg organic carbon). Pentachlorophenol associates strongly with the fulvic acid samples and the calculated K(oc) were the following (averages and standard deviations): (sFA) (211+/-22) x 10(2), (csFA) (253+/-26) x 10(2), (lsFA) (235+/-10) x 10(2). For comparison purposes the K(oc) for pyrene were also calculated for the three FA samples and were the following: (sFA) (119+/-10) x 10(2), (csFA) (239+/-21) x 10(2), (lsFA) (92+/-10) x 10(2). The analysis of variance (one-way ANOVA) of the effect of the type of FA sample on the solubilization of pentachlorophenol and pyrene shows that this factor causes significant differences on the aqueous solubilization of these two organic substances.  相似文献   

9.
The pulsed laser photolysis/pulsed laser-induced fluorescence (PLP/PLIF) technique has been applied to obtain rate coefficients for OH + dioxin (DD) (k1), OH + 2-chlorodibenzo-p-dioxin (2-CDD) (k2), OH + 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD) (k3), OH + 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) (k4), OH + 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) (k5), OH + 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) (k6), and OH + octachlorodibenzo-p-dioxin (OCDD) (k7) over an extended range of temperature. The atmospheric pressure (740 +/- 10 Torr) rate measurements are characterized by the following Arrhenius parameters (in units of cm3 molecule(-1) s(-1), error limits are 1 omega): k1(326-907 K) = (1.70+/-0.22) x 10(-12)exp(979+/-55)/T, k2(346-905 K) = (2.79+/-0.27) x 10(-12)exp(784+/-54)/T, k3(400-927 K) = 10(-12)exp(742+/-67)/T, k4(390-769 K) = (1.10+/-0.10) x 10(-12)exp(569+/-53)/T, k5(379-931 K) = (1.02+/-0.10) x 10(-12)exp(580+/-68)/T, k6(409-936 K) = (1.66+/-0.38) x 10(-12)exp(713+/-114)/T, k7(514-928 K) = (3.18+/-0.54) x 10(-12)exp(-667+/-115)/T. The overall uncertainty in the measurements, taking into account systematic errors dominated by uncertainty in the substrate reactor concentration, range from a factor of 2 for DD, 2-CDD, 2,3-DCDD, 2,7-DCDD, and 2,8-DCDD to +/- a factor of 4 for 1,2,3,4-TCDD and OCDD. Negative activation energies characteristic of an OH addition mechanism were observed for k1-k6. k7 exhibited a positive activation energy. Cl substitution was found to reduce OH reactivity, as observed in prior studies at lower temperatures. At elevated temperatures (500 K < T < 500 K), there was no experimental evidence for a change in reaction mechanism from OH addition to H abstraction. Theoretical calculations suggest that H abstraction will dominate OH reactivity for most if not all dioxins (excluding OCDD) at combustion temperatures (>1000 K). For OCDD, the dominant reaction mechanism at all temperatures is OH addition followed by Cl elimination.  相似文献   

10.
Sharma VK  Mishra SK  Ray AK 《Chemosphere》2006,62(1):128-134
Sulfamethoxazole (SMX), a worldwide-applied antibacterial drug, was recently found in surface waters and in secondary wastewater effluents, which may result in ecotoxical effects in the environment. Herein, removal of SMX by environmentally-friendly oxidant, potassium ferrate(VI) (K(2)FeO(4)), is sought by studying the kinetics of the reaction between Fe(VI) and SMX as a function of pH (6.93-9.50) and temperature (15-45 degrees C). The rate law for the oxidation of SMX by Fe(VI) is first-order with respect to each reactant. The observed second-order rate constant decreased non-linearly from 1.33+/-0.08 x 10(3) M(-1)s(-1) to 1.33+/-0.10 x 10(0) M(-1)s(-1) with an increase of pH from 7.00 to 9.50. This is related to protonation of Fe(VI) (HFeO(4)(-) <==> H(+) + FeO(4)(2-); pK(a,HFeO(4)) = 7.23) and sulfamethoxazole (SH <==> H(+) + S(-); pK(a,SH)=5.7). The estimated rate constants were k(11)(HFeO(4)(-) + SH) = 3.0 x 10(4) M(-1)s(-1), k(12)(HFeO(4)(-) + S(-)) = 1.7 x 10(2) M(-1)s(-1), and k(13) (FeO(4)(2-) + SH) = 1.2 x 10(0) M(-1)s(-1). The energy of activation at pH 7.0 was found to be 1.86+/-0.04 kJ mol(-1). If excess potassium ferrate(VI) concentration (10 microM) is used than the SMX in water, the half-life of the reaction using a rate constant obtained in our study would be approximately 2 min at pH 7. The reaction rates are pH dependent; thus, so are the half-lives of the reactions. The results suggest that K(2)FeO(4) has the potential to serve as an oxidative treatment chemical for removing SMX in water.  相似文献   

11.
Four driving conditions were examined to characterize how speeds and loads of a medium-duty diesel engine affect resultant diesel exhaust particulates (DEPs) in terms of number concentrations (< or =400 nm), size distribution, persistent free radicals, elemental carbon (EC), and organic carbon (OC). At the medium engine load (60%), DEPs surged in number concentrations at around 40-70 nm, whereas DEPs from the full engine load (100%) showed a distinctive bimodal distribution with a large population of 30-50 nm and 100-400 nm. Under the full engine load, engine speeds insignificantly affected resultant DEP number concentrations. When the engine load decreased from 100% to the medium level (60%), DEPs of ultrafine size and 100-400 nm decreased at least 1.4 times (from 5.6 x 10(8) to 4 x 10(8) #/cm3) and more than 3 times (from 2.7 x 10(8) to 0.8 x 10(8) #/cm3), respectively. The same reduction in the engine load significantly decreased persistent free radicals in DEPs up to approximately 30 times (from 123 x 10(16) to 4 x 10(16) #spin/g). Decreasing the engine load from 100 to 60% also concurrently reduced both EC and OC in total DEPs around 2 times, from 27.3 to 13.9 mg/m3, and from 17.6 to 9.2 mg/m3, respectively. For DEPs smaller than 1 microm, under the full engine load, EC and OC consistently peaked at 170-330 nm under an engine speed of 1800 rpm or 94-170 nm under an engine speed of 3000 rpm, reflecting processes of nucleation, cluster-cluster agglomeration, and condensation. Decreasing the engine load from 100 to 60% reduced EC and OC in DEPs (smaller than 1 microm) at least 3 times (0.6 to 0.2 mg/m3) and 2 times (0.4 to 0.2 mg/m3), respectively. Taken together, decreasing the full engine load to a medium (60%) level effectively reduced the number concentrations (< or =400 nm), persistent free radicals, EC, and OC of total DEPs, as well as the concentration of EC and OC in ultrafine and accumulation-mode DEPs.  相似文献   

12.
EC50 Microtox (5 min, 25 degrees C) assay values for 2-isopropylphenol, 3-isopropylphenol, 4-isopropylphenol, 2,4-diisopropylphenol, 2,5-diisopropylphenol 2,6-diisopropylphenol, 3,5-diisopropylphenol, carvacrol, thymol, thiophenol, and thiocresol ranged from 2 x 10(-2) mM for thymol (least toxic) to 2 x 10(-4) mM for 2,4-diisopropylphenol and 4-isopropylphenol (most toxic).  相似文献   

13.
Lin CJ  Lo SL  Liou YH 《Chemosphere》2005,59(9):1299-1307
Nanoscale zerovalent copper supported on a cation resin was successfully synthesized to enhance the removal of carbon tetrachloride (CCl(4)) from contaminated water. The use of the cation resin as a support prevents the reduction of surface area due to agglomeration of nanoscale zerovalent copper particles. Moreover, the cation resin recycles the copper ions resulting from the reaction between CCl(4) and Cu(0) by simultaneous ion exchange. The decline in the amount of CCl(4) in aqueous solution results from the combined effects of degradation by nanoscale zerovalent copper and sorption by the cation resin; thus the amount of CCl(4) both in aqueous solution and sorbed onto the resin were measured. The pseudo-first-order rate constant normalized by the surface-area and the mass concentration of nanoscale zerovalent copper (k(SA)) was 2.1+/-0.1 x 10(-2)lh(-1)m(-2), approximately twenty times that of commercial powdered zerovalent copper (0.04 mm). Due to the exchange between Cu(2+) and the strongly acidic ions (H(+) or Na(+)), the pH was between 3 and 4 in unbuffered solution and Cu(2+) at the concentration of less than 0.1 mg l(-1) was measured after the dechlorination reaction. In the above-ground application, resin as a support would facilitate the development of a process that could be designed for convenient emplacement and regeneration of porous reductive medium.  相似文献   

14.
In nature, organisms have to respond to a diversity of factors acting simultaneously. The present investigation was conducted to study whether changes in food (Chlorella) levels could modify the chronic toxicity of cadmium on the various life-history parameters, such as survivorship, longevity, life expectancy, fecundity, age at first reproduction, R(0), T, r and growth rates of the cladoceran Daphnia carinata. The study indicated that at low food levels (0.5 x 10(6) cells ml(-1) Chlorella), cadmium concentrations in the range of 27-162 microg litre(-1) reduced these life-history parameters by 50% (EC(50)). At medium food levels (1.5 x 10(6) ml(-1) Chlorella) the EC(50) of cadmium was in the range of 51-127 microg litre(-1). At high food levels (4.5 x 10(6) cells ml(-1) Chlorella), the toxic effect of cadmium was greatly reduced. The decreases in survival, growth and reproduction of D. carinata at high cadmium-low food levels affected the fitness parameter 'r'. The study emphasises the need to include reproductive parameters other than mere survival in toxicity bioassays. The study also stresses the need to incorporate in laboratory tests other relevant factors that might modify pollutant toxicity.  相似文献   

15.
The effects of different concentrations (10(-5), 5x10(-5) and 10(-4)M) of copper bromide on spore germination, growth and ultrastructure were investigated in Polypodium cambricum L. gametophytes. The inhibitory effect of Cu was observed in spores cultured on medium supplemented with 10(-4)M CuBr(2): germination occurred about 40 days after sowing and was only 25%. Concentrations of 5x10(-5) and 10(-4)M CuBr(2) induced changes in gametophyte development, possibly by re-orientation of growth. Gametophytes treated with 10(-5) and 5x10(-5)M CuBr(2) took up and accumulated a large amount of copper and ultrastructural observations showed that cytoplasmic damage was limited to twisted swollen thylakoids. The ultrastructure of gametophytes treated with 10(-4)M CuBr(2) showed absence of a vacuolar compartment. The present observations suggest that P. cambricum gametophytes could be a suitable material for studying physiological and molecular alterations induced by excess copper.  相似文献   

16.
The acute copper sensitivity of 44 European freshwater cladocerans, from four families (Daphniidae, Bosminidae, Macrothricidae, Chydoridae) and 13 genera (Daphnia, Ctenodaphnia, Ceriodaphnia, Simocephalus, Scapholeberis, Bosmina, Acantholeberis, Alona, Acroperus, Chydorus, Eurycercus, Disparalona and Pleuroxus) were assayed. The 48-h EC(50)s of field-collected organisms tested in reconstituted standard laboratory water ranged from 5.3 to 70.6 mug Cu L(-1). Only among Ctenodaphnia were significant intra-species differences observed. Significant inter-species differences were noted among Alonina and Daphnia. Between all genera tested, a maximum of a 12-fold difference in copper sensitivity was noted. Most animals were more sensitive than a laboratory D. magna clone. A weak non-significant increasing trend was noted between mean cladoceran 48-h EC(50) and ambient copper concentration of the different aquatic systems, suggesting acclimation/adaptation in the field. A positive relationship was also observed between the 48-h EC(50) of the field-collected cladoceran species (without the Chydoridae family) and the size of the organisms.  相似文献   

17.
The influence of different feeding rates, reduced photoperiod and ethanol and acetone exposure on male production in Daphnia magna was investigated. Male production was observed under reduced photoperiod (8-h light:16-h dark) in all food levels. However, the sex ratio of daphnids fed 1x10(6) algae cells increased significantly from that of daphnids fed 15x10(6) algae cells (0.486+/-0.059 and 0.271+/-0.027, respectively). Under normal photoperiod (16-h light:8-h dark) and low food conditions (3.75x10(6) algae cells), a statistically significant increase in the sex ratio was observed in daphnids exposed to acetone at EPA acceptable solvent limits (0.1 ml/l). A shift back to parthenogenetic reproduction was observed in acetone-exposed daphnids at high food levels (15x10(6) algae cells). The results indicate that the reproductive strategies of females are influenced by phenological (i.e. reduced photoperiod), dietary and exogenous chemical cues.  相似文献   

18.
New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.  相似文献   

19.
Guidance concerning recommended storage times for sediments to be used in toxicity tests generally has not been based upon systematically collected experimental data. The objective of this study was to better define the effects of storage time on toxicity of a series of freshwater sediments. Sixteen sediments with varying types of contaminants were collected, homogenized and stored at 4 degrees C in 1 liter aliquots, which were periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans after storage times of up to 101 weeks. The sediments ranged from non-toxic to extremely toxic (100% mortality) in 10-day assays, with several of the samples displaying an intermediate degree of toxicity (e.g. partial mortality, reduced growth). Biological responses in most of the samples did not vary with time relative to their statistical relationship to control values; samples identified initially as toxic (or non-toxic) tended to remain toxic (or non-toxic) regardless of when they were tested. The variations that were observed in biological responses over time generally were not systematic; that is, there were no apparent trends in samples becoming more (or less) toxic in the 10-day assays. This suggests that the source of at least some of the temporal changes in toxicity were due to inherent biological variability of the assays used to assess the sediments, rather than the effects of storage. In C. tentans tests with the least toxic sediments, among-replicate variability tended to be greater in initial assays than in tests with samples that had been stored for some period of time. This may have been due to the presence of indigenous competitive or predatory organisms that did not survive during prolonged storage.  相似文献   

20.
The cyclization of ethyl 2-(aminosulfonyl)benzoate (ASB) to give saccharin was investigated in aqueous solutions at pH between 5.2 and 9.5 and in the temperature range of 296.2-334.2 K. The initial concentration of the reactant was varied between 1.45 x 10(-5) and 3.86 x 10(-4) M. Ultraviolet spectroscopy was used to obtain the kinetic data. The reaction is acid catalyzed and follows pseudo-first-order kinetics. The experimental rate constant, k(obs), increases with temperature and pH. Its dependence on the temperature and pH is well described by: k(obs) = k1 [OH-] = [(2.52 +/- 0.9) x 10(16) exp(-20.2 +/- 1 kcalmol(-1)/RT) s(-1)][OH-] A mechanism is proposed and the half-life of ethyl ASB is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号