首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 383 毫秒
1.
铅是环境中常见的污染物,为探讨Wnt信号通路在铅暴露引起的胚胎发育毒性中的作用,将斑马鱼胚胎随机分为10组,每组100个,以铅(0、6、12、24、48μmol/L)和Wnt信号通路的激活剂HLY78(5μmol/L)单独及联合处理斑马鱼胚胎4-144 h,利用实时定量PCR技术进行分析.结果显示,铅单独暴露能够引起wnt3a表达量降低,而HLY78处理能够抑制wnt3a表达量的进行改变,修复Wnt信号通路.利用EthoVision XT软件获取并分析斑马鱼的自主运动、心率和运动行为等毒性试验的有效参数.与对照组相比,单独铅暴露组可致斑马鱼胚胎死亡率和畸形率增高,以及孵化率、心率和仔鱼平均活力降低(P0.05);加入Wnt信号通路的激活剂HLY78,与单独暴露组相比,死亡率和畸形率显著降低,孵化率、心率和仔鱼平均活力显著升高(P 0.05).各组间胚胎的自主运动没有显著差异.本研究结果表明铅暴露可影响斑马鱼胚胎的发育,使用HLY78激活Wnt信号通路能够显著地缓解铅暴露诱导的这些影响,预示破坏Wnt信号通路可能与铅诱导的发育毒性相关.(图5参28)  相似文献   

2.
为了评价环境中五氯酚(PCP)和八氯代二苯并二嚼英(OCDD)对水环境以及鱼类的影响,以斑马鱼为模式生物,研究了PCP和OCDD对其胚胎发育的单一及复合毒性效应.结果表明,PCP单独暴露(浓度25μg·L-1~5mg·L-1)对斑马鱼胚胎发育具有较强的毒性效应,可导致胚胎孵化率显著下降,死亡率、畸形率显著上升,而OCDD单独暴露(200、500μg·L-1)对斑马鱼胚胎发育没有明显的毒性效应;OCDD与环境浓度的PCP复合暴露(OCDD PCP1:250μg·L-1 25μg·L-1;OCDD PCP2:250μg·L-1 50μg·L-1)对斑马鱼胚胎的存活与发育等没有显著影响,对斑马鱼胚胎内CYP1A基因表达以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的酶活力也没有显著影响,在实验浓度下二者共存没有明显的复合毒性效应.  相似文献   

3.
为了评价环境中五氯酚(PCP)和八氯代二苯并二噁英(OCDD)对水环境以及鱼类的影响,以斑马鱼为模式生物,研究了PCP和OCDD对其胚胎发育的单一及复合毒性效应.结果表明,PCP单独暴露(浓度25μg·L-1~5mg·L-1)对斑马鱼胚胎发育具有较强的毒性效应,可导致胚胎孵化率显著下降,死亡率、畸形率显著上升,而OCDD单独暴露(200、500μg·L-1)对斑马鱼胚胎发育没有明显的毒性效应;OCDD与环境浓度的PCP复合暴露(OCDD+PCP1:250μg·L-1+25μg·L-1;OCDD+PCP2:250μg·L-1+50μg·L-1)对斑马鱼胚胎的存活与发育等没有显著影响,对斑马鱼胚胎内CYP1A基因表达以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的酶活力也没有显著影响,在实验浓度下二者共存没有明显的复合毒性效应。  相似文献   

4.
为探究纳米银对水生生物的毒性作用,选取斑马鱼胚胎为受试生物,考察了纳米银对斑马鱼胚胎早期生长发育的影响,同时比较了纳米银与银离子对斑马鱼胚胎的毒性作用和机理。实验将受精后4小时(4 hpf)的斑马鱼胚胎分别暴露于不同浓度的纳米银和银离子溶液中至96 hpf,观察并记录了胚胎的死亡、孵化和畸形等指标。应用吖啶橙(AO)染色实验研究了胚胎暴露之后的细胞凋亡情况,并且应用荧光定量PCR技术分析了相关基因的表达水平。研究结果表明,随着暴露浓度的增加,纳米银和银离子均能导致斑马鱼胚胎的死亡率增加和孵化率降低,并且引起孵化延迟。纳米银和银离子的96 h半数致死浓度(96 h-LC50)分别为11.75 mg·L-1和0.054 mg·L-1。银离子毒性远大于纳米银毒性。暴露的斑马鱼胚胎均表现出体长变短和卵黄囊肿大的畸形。AO染色结果表明,纳米银和银离子处理组胚胎的躯干和卵黄囊部位存在细胞凋亡信号。基因表达分析结果显示,1.93 mg·L-1纳米银显著提高了斑马鱼胚胎caspase9的表达(P0.05),而0.006 mg·L-1的银离子就能显著上调COX-2a(P0.01)和COX-17(P0.05)基因的表达,同时0.036 mg·L-1银离子增加了斑马鱼体内p53基因的表达(P0.05)。以上研究结果说明,纳米银可能通过caspase通路诱导细胞凋亡进而影响斑马鱼胚胎的生长发育;而银离子不但影响氧化系统基因通路,还能通过p53诱导凋亡进而阻滞斑马鱼胚胎的生长发育。  相似文献   

5.
为探讨铅对体外培养的人神经胶质瘤U251细胞(human U251glioma cells,U251)暴露后基因表达的变化以及相关基因通路,选用乙酸铅暴露U251细胞.细胞在乙酸铅中暴露8h和24h后提取RNA,使用cDNA芯片分析基因表达情况,芯片扫描结果经归一化处理,设定Ratio值<0.5或≥2.0为表达有差异基因.结果表明,铅暴露U251细胞导致2840条基因差异表达,使用KEGG和BioCarta数据库分析代表性基因网络.结果发现,铅暴露U251细胞导致大量基因差异表达,涉及多个代谢及信号通路,与神经组织相关的主要信号通路有Ca2+信号通路、Jak-STAT信号通路、MAPK信号通路、Wnt信号通路等,还涉及配体-受体、细胞因子相互作用等.这些通路相互联结,构成复杂的网络系统,调控细胞的生物学功能.  相似文献   

6.
为探讨纳米二氧化钛(Nano-TiO2)对人胚肺(HPF)细胞差异表达基因相关通路的影响,采用半致死浓度(0.437mg·mL-1)的10nmTiO2暴露体外培养的人胚肺细胞24h,提取RNA,应用基因芯片技术筛选差异表达基因,分析纳米TiO2对基因通路的影响.结果表明,纳米TiO2暴露人胚肺细胞,导致514条肺中表达的基因发生差异表达,涉及多个KEGG通路和BioCarta通路.纳米TiO2暴露人胚肺细胞可能产生以下生物学效应:1)众多位于细胞外区域和细胞膜上的基因(特别是细胞膜受体基因)差异表达,对外界环境胁迫产生应激反应;2)与炎症相关的细胞因子基因表达大量改变,调控细胞的炎症反应;3)钙离子通路的膜受体基因差异表达,导致大量钙离子内流,调控钙离子信号传导;4)某些基因的差异表达(如OCLN下调),降低了细胞紧密联接力;5)与造血细胞增殖和分化相关的基因差异表达,刺激产生大量白细胞以抵抗感染.  相似文献   

7.
双酚AF(4,4'-六氟-2-二酚,BPAF)对生物有机体具有内分泌干扰作用。为研究低剂量BPAF对水生生物的效应,本研究选择成年雄性斑马鱼为研究对象,考察了0.005、0.05和0.5 mg·L~(-1)3种浓度BAPF暴露30 d对血浆中卵黄蛋白原(VTG)含量、2种卵黄蛋白原基因(vtg~(-1)和vtg-3)表达和2种芳香酶基因(cyp 19a与cyp 19b)表达的影响。结果表明:在0.005 mg·L~(-1)浓度暴露30 d后,血浆中VTG含量显著升高,随着暴露浓度的升高,促进作用不显著;BPAF暴露对不同组织中的4种基因存在不同的影响,0.005 mg·L~(-1)BPAF暴露可诱导脑部cyp19b、肝脏中cyp19a和性腺中vtg~(-1)、vtg-3和cyp19b基因表达;0.5 mg·L~(-1)BPAF暴露可导致肝脏中vtg~(-1)、vtg-3、性腺中cyp19a等基因显著上调。实验结果表明,BPAF具有雌性激素样效应,可诱导雄性斑马鱼体内部分组织卵黄蛋白原基因和芳香酶基因的表达。BPAF可引起斑马鱼血浆中的VTG含量的上升,从而干扰由VTG所参与的下丘脑-垂体-性腺轴与免疫系统的正常生理过程。  相似文献   

8.
水生生物经常暴露于多种化合物中,多种农药联合会产生不同的毒性作用。在目前农药管理中,仅要求开展单剂的毒性评价,没有考虑到多种混合物对水生生物的联合毒性。咪鲜胺和多菌灵是农业生产中常混用的2种农药,为评价其联合毒性,以斑马鱼为受试生物,采用静态法和实时荧光定量PCR方法,测定了其单剂及混剂对斑马鱼胚胎的急性毒性和对斑马鱼幼鱼甲状腺轴关键基因的影响。急性毒性试验结果显示:咪鲜胺和多菌灵对斑马鱼胚胎96 h-LC50值分别为8.41 mg·L~(-1)和0.81 mg·L~(-1),表现为中毒和高毒。二元组合时,在24~96 h暴露时间内,对斑马鱼胚胎的急性毒性均表现为拮抗效应。基因表达结果显示:咪鲜胺抑制斑马鱼幼鱼促甲状腺激素释放激素(CRH)、促甲状腺激素(TSH)、甲状腺激素受体(TRα)、脱碘酶(D1、D2)基因的表达,对甲状腺激素转运蛋白(TTR)基因的表达没有显著影响;多菌灵抑制CRH、TSH、D1和D2基因的表达;暴露于二元组合时,低、中剂量组抑制CRH、TSH、D1和D2基因表达;二元组合与单剂相比,高剂量组促进TSH、D1和D2基因的表达,中剂量组促进TRα基因的表达。综上所述,咪鲜胺和多菌灵联合暴露能够干扰斑马鱼幼鱼早期发育,且与单剂相比,对斑马鱼甲状腺轴上基因干扰效应存在差异。因此,在农药风险评估中,应充分考虑农药联合暴露的效应。  相似文献   

9.
采用半静态水体暴露的方式研究了非离子表面活性剂对成熟雄性斑马鱼精巢组织的影响。用荧光定量PCR(qRTPCR)方法检测试验鱼精巢雌激素受体α(ERα)、雄激素受体(AR)基因以及性激素合成相关细胞色素P450酶类基因(CYP17和CYP19a)的表达,通过组织学观察研究受试鱼精巢结构的变化。结果表明,壬基酚聚氧乙烯醚(NPEO)暴露可以引起雄性斑马鱼精巢组织结构的改变,并影响成年雄性斑马鱼ERα、AR基因和性激素合成相关细胞色素P450酶类基因的表达水平,且10.0 mg·L~(-1)的NPEO暴露可以显著上调CYP19a、ERα和AR基因的表达量,可显著下调斑马鱼精巢中CYP17基因的表达量。在组织学上,0.1 mg·L~(-1)组斑马鱼生精小管内不仅生精小囊数目减少,且管腔中精子数量减少,出现非细胞区域; 1.0和10.0 mg·L~(-1)组可见部分个体精子凝聚于生精小管管腔中央,管腔内空隙明显增大,表现出严重的精子浓缩效应。由此表明,NPEO暴露通过抑制CYP17基因的表达干扰睾酮的合成;同时,NPEO暴露通过诱导CYP19a和ER基因的表达增加内源雌激素的合成,导致斑马鱼精巢中性激素紊乱,最终损伤斑马鱼精巢组织。  相似文献   

10.
五氯酚(PCP)是一种广泛存在于环境中的有机污染物。利用土壤跳虫(Folsomia candida)作为受试生物,研究了不同浓度的PCP暴露下细胞色素P450(CYP450)基因、谷胱甘肽转移酶(GST)基因和蜕皮相关基因表达水平的变化。结果显示,PCP暴露下,跳虫CYP450基因Fcc01651、Fcc02155、Fcc03650和GST基因Fcc04073、Fcc05260的表达水平未发生显著变化。在PCP浓度为240 mg·kg-1时,跳虫GST基因Fcc00494的表达显著上调。在PCP浓度为120 mg·kg-1和240 mg·kg-1时,几丁质酶基因Fcc00881和几丁质结合域基因Fcc01306的表达受到显著抑制。研究结果可为评价PCP暴露对跳虫的毒性提供一定依据。  相似文献   

11.
五氯苯酚(PCP)是一种曾被广泛使用的木材防腐剂、杀菌剂和除草剂,目前已经造成了世界范围内土壤和水体的污染.以生物曝气池原生动物群落为靶生物对五氯苯酚进行了12小时急性毒性试验研究,结果表明,此原生动物群落急性中毒的最大无致死和最小全致死浓度范围是0.4 ̄40mg·L-1,半数致死浓度为2.40mg·L-1.在PCP染毒条件下,原生动物群落结构表现出简单化趋势,随着PCP浓度的增加,原生动物种类越来越少.肉足类原生动物对PCP耐受能力最差,鞭毛类稍强,纤毛类耐受能力最好,且PCP浓度越大,其耐受优势越明显.  相似文献   

12.
五氯酚(PCP)对鸡肝癌细胞(LMH)毒性效应的机制研究   总被引:1,自引:0,他引:1  
五氯酚(pentachlorophenol,PCP)是一种持久性有机污染物,广泛用于灭钉螺、木材防腐、除草剂等方面,由于PCP在环境中的持久性和生物累积性,其对生态环境和人类健康造成潜在危害。本文以鸡肝癌细胞系(chicken hepatoma cells,LMH)为受试对象,探讨了PCP对细胞色素P450(CYP450)和抗氧化系统的影响。MTT结果显示LMH细胞经不同浓度PCP暴露后,呈现出先促进细胞增殖后抑制的J-型曲线,PCP对LMH细胞24 h的半数效应浓度(24 h-EC50)为427.52μmol·L~(-1)。LMH细胞在1.56、6.25、25、100μmol·L~(-1)PCP染毒条件下可增加细胞EROD、MROD、PROD和BFC活性,并可使CYP1A、1B、1C、2H及3A家族基因mRNA表达水平升高。LMH细胞在0.4~100μmol·L~(-1)PCP染毒下可显著降低硫酸基转移酶(SULT1B1和SULT 1C1)基因mRNA水平。此外,LMH细胞在6.25、25、100μmol·L~(-1)PCP染毒下可引起细胞内ROS升高,同时PCP(1.56~100μmol·L~(-1))可显著增加细胞内MDA含量和降低GSH/GSSH比值。这些结果表明细胞色素P450(CYP450)基因及酶活性的变化、细胞内ROS和MDA含量及GSH/GSSH可作为评价LMH细胞PCP毒性效应的敏感性生物标志物。此研究在细胞水平上利用多个评价指标研究PCP对细胞的毒性效应,为PCP环境风险评价提供依据。  相似文献   

13.
五氯苯酚的生态毒性效应及其遗传毒性   总被引:2,自引:1,他引:1  
为评价环境内分泌干扰物——五氯苯酚对土壤生态系统动植物的生态毒性效应,检测了五氯苯酚对8种作物种子的萌发和根伸长的抑制作用以及对赤子爱胜蚓(Eisenia fetida)的急性毒性作用;并运用小麦根尖细胞微核实验和赤子爱胜蚓体细胞核的彗星实验,检测了五氯苯酚的遗传毒性效应.结果表明,五氯苯酚在一定浓度范围内对作物种子的...  相似文献   

14.
三苯基锡和五氯酚胁迫斑马鱼生理生化的影响   总被引:1,自引:0,他引:1  
以斑马鱼(Brachy danio rerio)作为受试生物,分析不同暴露浓度、不同暴露时间三苯基锡(TPT)、五氯酚(PCP)对斑马鱼生理生化指标的影响,在0,1.05,2.09,4.18,6.27,8.36μg·L-1的TPT和0,5.01,10.02,20.04,40.08,80.16μg·L-1的PCP暴露下,...  相似文献   

15.
研究了紫泥田和浅脚紫泥田2种水稻土胶体界面五氯酚(PCP)的还原转化效果,以及添加Fe2+或草酸对五氯酚还原转化效果的影响.采用表观一级反应动力学描述土壤胶体界面五氯酚的转化过程.结果表明,紫泥田和浅脚紫泥田土壤胶体界面五氯酚的还原转化动力学常数分别为0.0375d-1和0.0430d-1,半衰期分别为18.5d和16.1d;厌氧条件下水稻土胶体中铁氧化物还原溶解产生的吸附态Fe2+对五氯酚具有一定的还原转化能力.添加1.0mmol·L-1Fe2+或1.0mmol·L-1草酸均能显著促进土壤胶体界面五氯酚的还原转化和氯离子的产生,紫泥田土壤胶体界面五氯酚的还原转化半衰期分别减少到9.6d和6.0d,浅脚紫泥田土壤胶体界面五氯酚的转化半衰期分别减少到7.9d和3.0d.草酸促进作用更加显著的原因是铁-草酸配合物的生成.土壤胶体界面五氯酚的还原转化、脱氯效率与土壤胶体的比表面积、吸附态亚铁离子浓度有一定的正相关关系.促进土壤中吸附态亚铁离子和草酸等低分子量有机酸的产生能显著促进有机氯的还原转化.  相似文献   

16.
The U.S. Environmental Protection Agency (E.P.A.) recognized PCP as an environmental pollutant in need of control. Temperature and hardness were two controlling factors in PCP toxicity to fish.

Information on acute toxicity may provide the upper bounderies of dose‐response relationships.

Adult goldfish (Carassius auratus) were used to determine acute toxicity to 24, 48, 72 and 96 h LC50 for PCP.

Natural degradation and persistence of PCP in experimental water was also determined at pH 8.4 and two temperatures (22 and 29 °C).  相似文献   

17.
太湖流域3种氯酚类化合物水质基准的探讨   总被引:13,自引:7,他引:13  
按照美国地面水水质基准制定的程序和规范,筛选了太湖流域广泛存在的水生生物物种并收集了相应的基础毒性数据,探讨了五氯酚(PCP)、2,4-二氯酚(2,4-DCP)和2,4,6-三氯酚(2,4,6-TCP)在我国太湖地区的水生态基准的定值.同时采用蒙特卡罗构建物种敏感度分布(SSD)曲线和生态毒理模型方法预测了3种氯酚类化合物对太湖水生生物的急性基准浓度(CMC)和慢性基准浓度(CCC).结果表明,基于EPA规范方法和急慢性毒性比率得到的PCP、2,4-DCP和2,4,6-TCP3种氯酚类化合物的CMC值分别为25、908和594μg·L-1,CCC值分别为12、176和162μg·L-1;基于SSD曲线得到的CMC值分别为25、818和648μg·L-1,CCC值分别为6、75和198μg·L-1;基于生态毒理模型得到的CCC值分别为4、15和67μg·L-1,显示出3种方法得到的氯酚类化合物的CMC或CCC在同一个数量级上,但在数值上由生态毒理模型得出的CCC要小于其它两种方法,并且除PCP的急慢性基准值与美国EPA推出的水生态基准值相近外,其它两种氯酚类化合物的急慢性基准值均低于美国EPA推出的急慢性基准值.研究结果希望能为我国水质基准的制定提供一些有用的线索.  相似文献   

18.
以淡水底栖动物花翅羽摇蚊幼虫和淡水单孔蚓为研究对象,研究了沉积物中五氯酚对底栖生物的急慢性毒性效应。五氯酚对花翅羽摇蚊幼虫96 h及10 d的半数致死浓度(LC50)分别为20.6 mg·kg-1和12.5 mg·kg-1,28 d羽化半数抑制浓度(EC50)为0.79 mg·kg-1。沉积物中五氯酚对花翅羽摇蚊幼虫的羽化具有延滞作用,而且对雌性摇蚊羽化的延滞作用大于雄性,最终导致羽化摇蚊的性别失衡。淡水单孔蚓对五氯酚的耐受力较摇蚊幼虫强。五氯酚对淡水单孔蚓的96 h及14 d的LC50分别为37.6 mg·kg-1和20.2 mg·kg-1,对淡水单孔蚓21 d生长抑制的EC50为1.39 mg·kg-1。研究结果对推导五氯酚沉积物质量基准和进行沉积物生态风险评价提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号