首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈子方  李琴  赵勇胜 《中国环境科学》2015,35(12):3628-3633
通过批实验研究了Al(III)对糖浆溶液化学还原六价铬反应的影响,揭示了不同条件下Al(III)对六价铬还原反应动力学的影响.结果表明:Al(III)能够促进糖浆溶液还原六价铬反应进行;其作用机制是Al(III)与糖浆溶液中有机还原物质及Cr(VI)反应形成三者的络合物,降低糖浆中多酚等有机还原物质还原Cr(VI)的反应活化能,提高六价铬还原反应速率.Al(III)存在时,该六价铬还原反应符合准一级动力学反应; pH 2.0,2.5,3.0,3.5时,添加Al(III)的实验组中六价铬反应速率常数比对应的空白对照组中反应速率常数分别增加了0.0251,0.0139,0.0058, 0.0048h-1.添加Al(III)前后反应体系中六价铬还原的反应活化能(Eа)分别为66.38,62.80kJ/mol.当糖浆浓度不足时,Al(III)能够提高糖浆溶液还原六价铬的反应去除率.  相似文献   

2.
γ-射线辐照法去除水中的六价铬   总被引:2,自引:0,他引:2       下载免费PDF全文
以人工配制的含Cr水溶液[Cr(VI)=42mg/L]为研究对象,从动力学的角度考察了不同实验条件对γ-射线辐照还原Cr(VI)的影响.结果表明,初始pH值对Cr(VI)还原影响较大,酸性条件有利于Cr(VI)的还原,在15kGy的辐照强度下,pH2时,Cr(VI)的去除率达86.2%,而pH5和pH7时,Cr(VI)的去除率仅分别为36.3%和22.2%.乙醇的存在提高了Cr(VI)的辐照还原动力学常数.在乙醇添加量为0.1%(体积比),pH2的条件下,在较低的辐照强度(5kGy)下就可获得较高的Cr(VI)去除率(99.9%).中性条件下(pH7),添加1mmol/L的碳酸钠对Cr(VI)的还原有一定促进作用,而酸性条件下(pH2)则效果不明显.试验还考察了充N2或充O2对Cr(VI)辐照还原效果的影响,充N2气可增强Cr(VI)的还原效果,而充O2则抑制Cr(VI)的还原.  相似文献   

3.
Biochar is extensively used as an effective soil amendment for environmental remediation. In addition to its strong contaminant sorption capability, biochar also plays an important role in chemical transformation of contaminant due to its inherent redox-active moieties. However, the transformation efficiency of inorganic contaminants is generally very limited when the direct adsorption of contaminants on biochar is inefficient. The present study demonstrates the role of Fe ion as an electron shuttle to enhance Cr(VI) reduction by biochars. Batch experiments were conducted to examine the effects of Fe(III) levels, pyrolysis temperature of biochar, initial solution pH, and biochar dosage on the efficiency of Cr(VI) removal. Results showed a significant enhancement in Cr(VI) reduction with an increase in Fe(III) concentration and a decrease of initial pH. Biochar produced at higher pyrolysis temperatures (e.g., 700°C) favored Cr(VI) removal, especially in the presence of Fe(III), while a higher biochar dosage proved unfavorable likely due to the agglomeration or precipitation of biochar. Speciation analysis of Fe and Cr elements on the surface of biochar and in the solution further confirmed the role of Fe ion as an electron shuttle between biochar and Cr(VI). The present findings provide a potential strategy for the advanced treatment of Cr(VI) at low concentrations as well as an insight into the environmental fate of Cr(VI) and other micro-pollutants in soil or aqueous compartments containing Fe and natural or engineered carbonaceous materials.  相似文献   

4.
Cr(VI)是一种毒性极强的重金属,利用微生物还原Cr(VI)为Cr(III)是解决Cr(VI)污染的一条有效途径。菌株Enterobacter sp. L6是一株分离自海洋沉积物中的异化铁还原细菌。接种时细胞密度A600为(0.25±0.03),培养12 h,A600达到(1.04±0.05),累积产生Fe(II)浓度为(0.80±0.03)mmol/L;随着培养时间的延长,细胞密度A600和累积产生Fe(II)浓度开始下降;培养36 h时,细胞密度A600为(0.81±0.04),累积Fe(II)浓度(0.63±0.01)mmol/L。在厌氧培养过程中,菌株L6细胞生长与异化还原Fe(III)性质存在明显的偶联关系。利用菌株L6的异化铁还原性质还原Cr(VI)的实验结果表明,在Cr(VI)浓度0~24 mg/L范围内,异化铁还原细菌L6都能进行细胞生长并还原Cr(VI)。Cr(VI)浓度为4、8和12 mg/L时,菌株L6对Cr(VI)还原率可达到100%,当Cr(VI)浓度为16 mg/L时,Cr(VI)还原率是参比[未添加Fe(III)]的2.11倍。Cr(VI)浓度为20、24 mg/L时,仍能够还原Cr(VI)。以Fe(III)为电子受体的异化铁还原细菌能明显提高Cr(VI)还原率,这为利用微生物修复Cr(VI)污染提供实验数据支持。  相似文献   

5.
Investigation on Cr( Ⅵ ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) canbe effectively reduced to Cr( Ⅲ ) by Pseudomonas aeruginosa. The effects of the factors affecting Cr( Ⅵ ) reduction rate including carbon source type, pH, initial Cr(Ⅵ) concentration and amount of calls inoculum were thoroughly studied. Malate was found to yield maximum biotransformation, followed by succinate and glucose, with the reduction rate of 60.86%, 43. 76% and 28.86% respectively. The optimum pH for Cr( Ⅵ ) reduction was ?.0, with reduction efficiency of 61.71 % being achieved. With the increase of initial Cr(Ⅵ) concentration,the rate of Cr(Ⅵ) reduction decreased. The reduction was inhibited strongly when the initial Cr(Ⅵ) concentration increased to 157 mg/L. As the amount of cells inoculum increased, the rate of Cr( Ⅵ ) reduction also increased. The mechanism of Cr( Ⅵ ) reduction and final products were also analysed. The results suggested that the soluble enzymes appear to be responsible for Cr (Ⅵ) reduction by Pseudomonas aeruginosa, and the reduced Cr( Ⅲ ) was not precipitated in the form of Cr(OH)3.  相似文献   

6.
Oxidation of Cr(III) by manganese oxides may pose a potential threat to environments due to the formation of toxic Cr(VI) species. At present, it was still unclear whether the extent of Cr(III) oxidation and fate of Cr(VI) would be changed when manganese oxides co-exist with other minerals, the case commonly occurring in soils. This study investigated the influence of goethite and kaolinite on Cr(III) oxidation by birnessite under acidic pH condition (pH 3.5) and background electrolyte of 0.01 mol/L NaCl. Goethite was found not to affect Cr(III) oxidation, which was interpreted as the result of overwhelming adsorption of cationic Cr(III) onto the negatively-charged birnessite (point of zero charge (PZC) < 3.0) rather than the positively-charged goethite (PZC = 8.8). However, more Cr(VI) would be retained by the surface with the increase in addition of goethite because of its strong ability on adsorption of Cr(VI) at low pH. Moreover, either Cr(III) oxidation or distribution of the generated Cr(VI) between the solid and solution phases was not affected by kaolinite (PZC < 3.0), indicating its low affinity for Cr species. Reactions occurring in the present mixed systems were suggested, which could be partly representative of those in the soils and further indicates that the mobility and risk of Cr(VI) would be decreased if goethite was present.  相似文献   

7.
以硫代硫酸钠为还原剂,将铬渣中的六价铬(Cr(VI))解毒转化为三价铬(Cr(III)),并加入磷酸盐作为稳定剂稳定解毒后的铬渣,考察不同反应时间和药剂用量对铬渣中Cr(VI)去除效果的影响.结果表明:硫代硫酸钠可以有效去除铬渣中的Cr(VI),当其与Cr(VI)的摩尔比为理论摩尔比的12倍、处理时间15d时铬渣中Cr(VI)的去除率达到最高(70%),继续增加还原剂用量或延长反应时间均不能有效提高Cr(VI)的去除率.随后加入磷酸钠作为稳定剂,当其物质的量为生成Cr(III)的4倍时,硫代硫酸钠与磷酸钠分步加入(两步法)比同时加入(一步法)处理铬渣的效果较好,处理效果最好时总铬浸出浓度为6.1mg/L,低于危险废物浸出鉴别的总铬标准(15mg/L),而且形成稳定的铬的化合物(CrPO4·6H2O).铬渣pH值变化、五态变化、XRD及XPS分析等结果表明,两步法的处理效果好于一步法.  相似文献   

8.
在实验室纯培养条件下,探讨厌氧体系中Shewanella oneidensis MR-1对Cr(VI)的还原能力,采用扫描电镜(SEM)-能谱(EDS)、X射线光电子能谱(XPS)等方法进行表征.结果表明,S.oneidensis MR-1介导下不同浓度Cr(VI)的生物转化与微生物对铬的耐受特性密切相关,低浓度Cr(VI)对其生长影响不大,高浓度时细菌生长则受到抑制,进而抑制Cr(VI)的还原率;菌株对Cr(VI)的还原作用随着接种菌悬液量的增加而增强;菌株最适生长pH值为中性,弱碱性环境比酸性环境更有利于菌株对Cr(VI)的还原;增加Fe(Ⅲ)的量会加快Cr(VI)完全还原的速率.通过SEM-EDS和XPS分析,在对Cr(VI)进行处理5d后,菌体表面有Cr(VI)和Cr(Ⅲ)两种形态存在,证实S.oneidensis MR-1在对Cr(VI)进行还原的同时也伴有少量的吸附作用.微生物还原为环境中Cr(VI)的去除以及解毒提供了一种有效的方法.  相似文献   

9.
Nanoscale zero-valent iron(nZVI) assembled on graphene oxide(GO)(rGO-nZVI) composites were synthesized by reduction of GO and ferrous ions with potassium borohydride,for use in Cr(VI) removal from aqueous solution.The results showed that the two-dimensional structure of GO could provide a skeleton support for Fe~0,thus overcoming the bottleneck of aggregation for nZVI.Also,rGO-nZVI would form a ferric-carbon micro-electrolysis system in Cr(VI)-contaminated aquifers,enhancing and accelerating electron transfer,exhibiting high rate and capacity for Cr(VI) removal.The optimum dosage of the applied r GO-nZVI was linearly correlated with the initial Cr(VI) concentration.Characterization of rGO-nZVI before and after reaction with Cr(VI) revealed the process of Cr(VI) removal:r GO-nZVI firstly transferred electrons from Fe~0 cores via their Fe(II)/Fe(III) shells to the GO sheet;there,negatively charged Cr(VI) received electrons and changed into positively charged Cr(III),which was adsorbed by the negatively charged GO sheet,avoiding the capping and passivating of nZVI.rGO-nZVI formed a good electrically conductive network,and thus had long-term electron releasing properties,which was important for groundwater remediation.  相似文献   

10.
Nanoscale zero-valent iron (nZVI) assembled on graphene oxide (GO) (rGO-nZVI) composites were synthesized by reduction of GO and ferrous ions with potassium borohydride, for use in Cr(VI) removal from aqueous solution. The results showed that the two-dimensional structure of GO could provide a skeleton support for Fe0, thus overcoming the bottleneck of aggregation for nZVI. Also, rGO-nZVI would form a ferric-carbon micro-electrolysis system in Cr(VI)-contaminated aquifers, enhancing and accelerating electron transfer, exhibiting high rate and capacity for Cr(VI) removal. The optimum dosage of the applied rGO-nZVI was linearly correlated with the initial Cr(VI) concentration. Characterization of rGO-nZVI before and after reaction with Cr(VI) revealed the process of Cr(VI) removal: rGO-nZVI firstly transferred electrons from Fe0 cores via their Fe(II)/Fe(III) shells to the GO sheet; there, negatively charged Cr(VI) received electrons and changed into positively charged Cr(III), which was adsorbed by the negatively charged GO sheet, avoiding the capping and passivating of nZVI. rGO-nZVI formed a good electrically conductive network, and thus had long-term electron releasing properties, which was important for groundwater remediation.  相似文献   

11.
周雅琦  王刚  张航  马玉 《中国环境科学》2022,42(12):5658-5667
以二硫代羧基化羟甲基聚丙烯酰胺(DTMPAM)作为高分子絮凝剂,研究DTMPAM对水中Cr (Ⅵ)的去除性能,考察了DTMPAM投加量、pH值、Cr (Ⅵ)初始浓度以及共存浊度、无机物质、有机物质对DTMPAM处理含Cr (Ⅵ)废水性能的影响.结果表明,DTMPAM在酸性条件下对不同Cr (Ⅵ)初始浓度的含Cr (Ⅵ)水样均具有良好的去除效果,且Cr (Ⅵ)的去除率随着体系初始pH值的降低而升高;当pH值为3.0时,DTMPAM对Cr (Ⅵ)初始浓度为5,15,25和50mg/L水样中Cr (Ⅵ)的最高去除率分别达到94.78%,96.52%,96.53%和97.49%.共存浊度对DTMPAM去除Cr (Ⅵ)具有抑制作用.在低DTMPAM投加量下,共存无机阳离子K+、Na+、Ca2+、Mg2+,共存无机阴离子SO42-、NO3-、Cl-,以及共存有机物质柠檬酸钠、乙酸钠、三氯乙酸和氨基乙酸等对DTMPAM去除Cr (Ⅵ)均具有一定的抑制作用;而在高DTMPAM投加量下,这些物质的存在会对DTMPAM去除Cr (Ⅵ)表现出较小的促进作用.无机阳离子Fe3+、Ni2+、Ba2+的存在对DTMPAM去除Cr (Ⅵ)具有较明显的抑制作用,其中Ba2+的抑制作用最显著.红外光谱和能谱分析显示,DTMPAM高分子链上的二硫代羧基可将水样中Cr (Ⅵ)还原为Cr (Ⅲ),Cr (Ⅲ)进一步和DTMPAM分子链上的二硫代羧基、胺基发生螯合反应形成絮体.  相似文献   

12.
Studyonactivatedcarboninchromium-containingwastewatertreatmentbyXPSYangJun;WangYunxiu(ShandongUniversityofTechnology,Jinan250...  相似文献   

13.
Ferrihydrite is an important sink for the toxic heavy metal ions, such as Cr(VI). As ferrihydrite is thermodynamically unstable and gradually transforms into hematite and goethite, the stability of Cr(VI)-adsorbed ferrihydrite is environmentally significant. This study investigated the phase transformation of Cr(VI)-adsorbed ferrihydrite at different pH in the presence of aqueous Mn(II), as well as the fate of Mn(II) and Cr(VI) in the transformation process of ferrihydrite. Among the ferrihydrite transformation products, hematite was dominant, and goethite was minor. The pre-adsorbed Cr(VI) inhibited the conversion of ferrihydrite to goethite at initial pH 3.0, whereas little amount of adsorbed Mn(II) favored the formation of goethite at initial pH 7.0. After the aging process, Cr species in solid phase existed primarily as Cr(III) in the presence of Mn(II) at initial pH 7.0 and 11.0. The aqueous Mn concentration was predominantly unchanged at initial pH 3.0, whereas the aqueous Mn(II) was adsorbed onto ferrihydrite or form Mn(OH)2 precipitates at initial pH 7.0 and 11.0, promoting the immobilization of Cr(VI). Moreover, the oxidation of Mn(II) occurred at initial pH 7.0 and 11.0, forming Mn(III/IV) (hydr)oxides.  相似文献   

14.
The purpose of this study is to estimate the removal efficiency of As and Cr (VI) by one kind of industrial waste — iron chips, as well as to estimate the effects of typical inorganic anions (sulfate, phosphate, and nitrate), and typical organic anions (citrate, oxalate, and humate) on As or Cr (VI) removal. The results showed that 98% of As (V) and 92% of As (III) could be removed from aqueous phase by the iron chips within 60 min. Compared with As species, Cr (VI) was removed much more rapidly and efficiently with 97% of Cr (VI) being removed within 25 min. The removal efficiency for arsenic was in the order: As (III) (sulfate), As (III) (nitrate) or As (III), As (III) (humate), As (III) (oxalate), As (III) (citrate), As (III) (phosphate), and for chromate was in the order: Cr (VI) (sulfate), Cr (VI) (phosphate) or Cr (VI) (nitrate) or Cr (VI) (oxalate), Cr (VI), Cr (VI) (citrate), Cr (VI) (humate). In all the treatments, pH level increased with time except for As (III), the removal of which was either without anions or in the presence of humate or nitrate.  相似文献   

15.
Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS)system and X-ray diffractometer(XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe2+released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe2+responsible for Cr(VI) removal was primarily derived from the dissolution of Fe O and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum(Ca SO4·2H2O)could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe2+and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps.  相似文献   

16.
Response of soil catalase activity to chromium contamination   总被引:3,自引:0,他引:3  
The impact of chromium(III) and (VI) forms on soil catalase activity was presented. The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from di erent depths were used in the experiment. The soil samples were amended with solution of Cr(III) using CrCl3, and with Cr(VI) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control. Catalase activity was assayed by one of the commonly used spectrophotometric methods. As it was demonstrated in the experiment, both Cr(III) and Cr(VI) have an ability to reduce soil catalase activity. A chromium dosage of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(III) and 68% to 76% for Cr(VI), with relation to the control. Catalase activity reached maximum in the soil material from surface layers (0–25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.  相似文献   

17.
IntroductionThediversityamonginsectlifehistoriesmakesitdifficulttocomparetheeffectofachemical(orfactor)onthedevelopmentoftheseorganisms.Thediversityofbioassaysrangesfromthepopulationleveltothemolecularlevelandfrominvivotoinvitrostudies(Zhang ,1 993 ) .Differentparametershavebeenusedtostudyinsectgrowthinhibitionofmanychemicals.Forexample ,LD50 (thedosewhichcauses50 %mortalityinapopulation)iscommonlyusedtodeterminetheactivityofchemicalsthathaveacutetoxicity .Itcannotbeusedtothosechemicalsthatd…  相似文献   

18.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

19.
Batch mode experiments were conducted to study the removal of hexavalent chromium(Cr(Ⅵ)) from aqueous solutions using ultrasound-assisted aqueous solution ball milling.The results show that the reduction rate of Cr(Ⅵ) by ultrasound-assisted aqueous solution ball milling was significantly faster than that by ball milling or ultrasound treatment alone,and an initial Cr(Ⅵ) concentration of 166 mg/L could be decreased to 0.35 mg/L at 120 min.The decisive factors, including initial concentration of Cr(Ⅵ), p H value, ultrasonic frequency and filling gas, were studied. It was found that the optimal ultrasonic frequency for ultrasound-assisted aqueous solution ball milling device was 20 k Hz, and the rate of Cr(Ⅵ)reduction as a function of filling gas followed the order: Ar air N_2 O_2. Samples were characterized by X-ray diffraction, fluorescence measurements, atomic absorption and the diphenylcarbazide colorimetric method. The Cr(Ⅵ) transformed into a precipitate that could be removed from the contaminated water, after which the water could be reused.  相似文献   

20.
海藻酸钠固定化Fe-Cu双金属去除Cr(Ⅵ)的作用机制   总被引:2,自引:0,他引:2       下载免费PDF全文
通过运用海藻酸钠(SA)固定化Fe-Cu双金属(SAB)来克服Fe0-PRB利用率低、易板结、堵塞的缺陷.结果表明,SA和Fe-Cu双金属的运用能极大地提高Fe0的利用率,SA的运用可以使Fe-Cu双金属以较低的镀铜量获得较高的Cr(Ⅵ)去除率,SAB镀铜0.9%(SAB0.9)为最佳的填料.FEI电镜扫描结果表明,SA跟2价金属阳离子Ca2+交联形成孔隙结构,为双金属的附着提供了大量的吸附点位,增大了金属颗粒的比表面积;场发射扫描电子显微镜(FESEM)及X-射线光电子能谱(XPS)结果表明,Cu负载于Fe0表面,呈疏松层状结构,在Fe0与Cr(Ⅵ)反应中起催化剂作用,通过自身化合态变化传递Fe0失去的电子,从而提高了Fe0的利用率.渗透系数实验结果表明,SAB0.9能控制Fe0与Cr(Ⅵ)反应产物的释放,缓解Fe0-PRB易板结、堵塞的缺陷.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号