首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to study the influences of functionalized groups onto the adsorption of tetracycline (TC), we prepared a series of amino and amino–Fe3 + complex mesoporous silica adsorbents with diverse content of amino and Fe3 + groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction, Fourier transform infrared spectrometer and N2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe3 + groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe3 + increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe3 + content increased from 3.93% to 8.26%, the Qmax of the adsorbents increased from 102 to 188 mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications.  相似文献   

2.
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2 + under the light-anaerobic condition. Results showed that with the optimal Mg2 + dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2 + could promote the content of bacteriochlorophyll in photosynthesis because Mg2 + is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2 +, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.  相似文献   

3.
Removal of Pb~(2+)and biodegradation of organophosphorus have been both widely investigated respectively. However, bio-remediation of both Pb~(2+)and organophosphorus still remains largely unexplored. Bacillus subtilis FZUL-33, which was isolated from the sediment of a lake, possesses the capability for both biomineralization of Pb~(2+)and biodegradation of acephate. In the present study, both Pb~(2+)and acephate were simultaneously removed via biodegradation and biomineralization in aqueous solutions.Batch experiments were conducted to study the influence of p H, interaction time and Pb~(2+)concentration on the process of removal of Pb2+. At the temperature of 25°C, the maximum removal of Pb~(2+)by B. subtilis FZUL-33 was 381.31 ± 11.46 mg/g under the conditions of p H 5.5, initial Pb~(2+)concentration of 1300 mg/L, and contact time of 10 min. Batch experiments were conducted to study the influence of acephate on removal of Pb~(2+)and the influence of Pb2+on biodegradation of acephate by B. subtilis FZUL-33. In the mixed system of acephate–Pb2+, the results show that biodegradation of acephate by B. subtilis FZUL-33 released PO43+, which promotes mineralization of Pb2+. The process of biodegradation of acephate was affected slightly when the concentration of Pb2+was below 100 mg/L. Based on the results, it can be inferred that the B. subtilis FZUL-33 plays a significant role in bio-remediation of organophosphorus-heavy metal compound contamination.  相似文献   

4.
5.
In recent years, engineered nanoparticles, as a new group of contaminants emerging in natural water, have been given more attention. In order to understand the behavior of nanoparticles in the conventional water treatment process, three kinds of nanoparticle suspensions, namely multi-walled carbon nanotube-humic acid (MWCNT-HA), multi-walled carbon nanotube-N,N-dimethylformamide (MWCNT-DMF) and nanoTiO2-humic acid (TiO2-HA) were employed to investigate their coagulation removal efficiencies with varying aluminum chloride (AlCl3) concentrations. Results showed that nanoparticle removal rate curves had a reverse “U” shape with increasing concentration of aluminum ion (Al3 +). More than 90% of nanoparticles could be effectively removed by an appropriate Al3 + concentration. At higher Al3 + concentration, nanoparticles would be restabilized. The hydrodynamic particle size of nanoparticles was found to be the crucial factor influencing the effective concentration range (ECR) of Al3 + for nanoparticle removal. The ECR of Al3 + followed the order MWCNT-DMF > MWCNT-HA > TiO2-HA, which is the reverse of the nanoparticle size trend. At a given concentration, smaller nanoparticles carry more surface charges, and thus consume more coagulants for neutralization. Therefore, over-saturation occurred at relatively higher Al3 + concentration and a wider ECR was obtained. The ECR became broader with increasing pH because of the smaller hydrodynamic particle size of nanoparticles at higher pH values. A high ionic strength of NaCl can also widen the ECR due to its strong potential to compress the electric double layer. It was concluded that it is important to adjust the dose of Al3 + in the ECR for nanoparticle removal in water treatment.  相似文献   

6.
Mg–Al–Cl layered double hydroxide (Cl-LDH) was prepared to simultaneously remove Cu(II) and Cr(VI) from aqueous solution. The coexisting Cu(II) (20 mg/L) and Cr(VI) (40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(II) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(II) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(II) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(II) (200 mg/L) and Cr(VI) (400 mg/L). The affecting factors (such as solution initial pH, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of pH values and the concentrations of Mg2+ and Al3+ in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl in Cl-LDH interlayer, isomorphic substitution of Mg2+ with Cu2+, formation of Cu2Cl(OH)3 precipitation, and the adsorption of Cr(VI) by Cu2Cl(OH)3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

7.
8.
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe0 was investigated. Organic acids improved dye reduction by augmenting Fe0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its ‘salting out’ effect on the bulk solution and by Cl anion-mediated pitting corrosion of iron surface. (NH4)2SO4 induced ‘salting out’ effect accompanied by enhanced iron corrosion by SO42 − anion and buffering effect of NH4+ improved the reduction rates. However, at 2 g/L (NH4)2SO4 concentration, complexating of SO42 − with iron oxides decreased Fe0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and ‘salting in’ effect in solution, and due to it masking the Fe0 surface. Decolouration obeyed biphasic reduction kinetics (R2 > 0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH 2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH 2.  相似文献   

9.
Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu2 +) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu2 + sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu2 + sorption was greater than a certain value, which was 632, 450, 601 and 674 mg/kg for sand, clay, silt, and coarse silt fractions, respectively. Aluminum dissolution increased with increasing Cu2 + sorption and decreasing solution pH. An amount of dissolved Al showed a significant positive correlation with non-specific sorption of Cu2 + (R2 > 0.97), and it was still good under different pH values (R2 > 0.95). Copper sorption significantly decreased solution pH. The magnitude of solution pH decline increased as Cu2 + sorption and Al dissolution increased. The sand and clay fraction had a less Al dissolution and pH drop due to the higher ferric oxide, Al oxide and organic matter contents. After sorption reaction for half an hour, the Cu2 + sorption progress reached more than 90% while the Al dissolution progress was only 40%, and lagged behind the Cu2 + sorption. It indicated that aluminum dissolution is associated with non-specific sorption.  相似文献   

10.
Dolomite lime(DL)(CaMg(OH)_4) was used as an economical source of Mg~(2+)for the removal and recovery of phosphate from an anaerobic digester effluent of a municipal wastewater treatment plant(MWWTP) wastewater. Batch precipitation results determined that phosphate was effectively reduced from 87 to less than 4 mg-P/L when the effluent water was mixed with 0.3 g/L of DL. The competitive precipitation mechanisms of different solids in the treatment system consisting of Ca~(2+)–Mg~(2+)–NH_4~+–PO_4~(3-)CO_3~(2-)were determined by comparing model predictions with experimental results. Thermodynamic model calculations indicated that hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2), Ca_4H(PO_4)_3?3H_2O, Ca_3(PO_4)_2(beta), and Ca_3(PO_4)_2(am2)were more stable than struvite(MgNH_4PO_3?6H_2O) and calcite(CaCO_3). However, X-ray diffraction(XRD) analysis determined the formation of struvite and calcite minerals in the treated effluent. Kinetic experimental results showed that most of the phosphate was removed from synthetic effluent containing NH_4~+within 2 hr, while only 20% of the PO_4~(3-)was removed in the absence of NH_4~+after 24 hr of treatment. The formation of struvite in the DL-treated effluent was due to the rapid precipitation rate of the mineral. The final pH of the DL-treated effluent significantly influenced the mass ratio of struvite to calcite in the precipitates. Because more calcite was formed when the p H increased from 8.4 to 9.6, a p H range of 8.0–8.5 should be used to produce solid with high PO_4~(3-)content. This study demonstrated that DL could be used for effective removal of phosphate from the effluent and that resultant precipitates contained high content of phosphate and ammonium.  相似文献   

11.
In this study, cucurbit[8]uril (CB[8]) was utilized as a kind of new adsorbent to remove Pb2 + ions from aqueous solution. With the solution pH increased from 2 to 6, the removal efficiency of adsorption increased from 55.6% to 74.5%correspondingly. The uptake of Pb2 + increased rapidly in the initial 30 min, and then the adsorption rate became slower. The Pseudo-second order model could be used to interpret the adsorption kinetics satisfactorily; and the rate determining step in Pb2 + adsorption onto CB[8] was the external mass transfer step. Equilibrium isotherm study reveals that the Langmuir model gave a better fitting result than Freundlich model. The maximum adsorption capacity calculated by the Langmuir model was 152.67 mg/g for 298 K, 149.70 mg/g for 313 K and 136.42 mg/g for 323 K, respectively. The adsorption is a spontaneous process of exothermic nature. The effect of the adsorbent dosage and the influences of solution pH and co-existing cations were also investigated. The CB[8] was synthesized and characterized by 1H NMR, IR, ESI-MS spectra, SEM-EDAX, Zeta-potential and BET-analysis. The adsorption mechanism was due to the coordination between CB[8] molecule and Pb2 + ions.  相似文献   

12.
To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2 + > Mg2 + > K+ > Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.  相似文献   

13.
Weak magnetic field(WMF) was employed to improve the removal of Cr(VI) by zero-valent iron(ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12–5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher p H. Fe2+was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+release rate in the absence of Cr(VI) at pH 4.0–5.5. These phenomena imply that ZVI corrosion with Fe2+release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI)removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore,WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation.  相似文献   

14.
The kinetics of Cr(VI) reduction to Cr(III) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(VI) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (< 200 mesh) in 120 min). The reduction of hexavalent chromium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(VI) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coefficients (k obs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min−1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25°C and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min−1 were obtained at the temperature range of 288–308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticles > Fe0 nanoparticles > Fe0 powder > Fe0 filings. Electrochemical analysis of the reaction process showed that Cr(III) and Fe(III) hydroxides should be the dominant final products.  相似文献   

15.
Magnetic Fe0/Fe3O4/graphene has been successfully synthesized by a one-step reduction method and investigated in rapid degradation of dyes in this work. The material was characterized by N2 sorption–desorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating-sample magnetometer (VSM) measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that Fe0/Fe3O4/graphene had a layered structure with Fe crystals highly dispersed in the interlayers of graphene, which could enhance the mass transfer process between Fe0/Fe3O4/graphene and pollutants. Fe0/Fe3O4/graphene exhibited ferromagnetism and could be easily separated and re-dispersed for reuse in water. Typical dyes, such as Methyl Orange, Methylene Blue and Crystal Violet, could be decolorized by Fe0/Fe3O4/graphene rapidly. After 20 min, the decolorization efficiencies of methyl orange, methylene blue and crystal violet were 94.78%, 91.60% and 89.07%, respectively. The reaction mechanism of Fe0/Fe3O4/graphene with dyes mainly included adsorption and enhanced reduction by the composite. Thus, Fe0/Fe3O4/graphene prepared by the one-step reduction method has excellent performance in removal of dyes in water.  相似文献   

16.
Lagerstroemia speciosa bark (LB) embedded magnetic nanoparticles were prepared by co-precipitation of Fe2+ and Fe3+ salt solution with ammonia and LB for Cr(VI) removal from aqueous solution. The native LB, magnetic nanoparticle (MNP), L. speciosa embedded magnetic nanoparticle (MNPLB) and Cr(VI) adsorbed MNPLB particles were characterized by SEM–EDX, TEM, BET-surface area, FT-IR, XRD and TGA methods. TEM analysis confirmed nearly spherical shape of MNP with an average diameter of 8.76 nm and the surface modification did not result in the phase change of MNP as established by XRD analysis, while led to the formation of secondary particles of MNPLB with diameter of 18.54 nm. Characterization results revealed covalent binding between the hydroxyl group of MNP and carboxyl group of LB particles and further confirmed its physico-chemical nature favorable for Cr(VI) adsorption. The Cr(VI) adsorption on to MNPLB particle as an adsorbent was tested under different contact time, initial Cr(VI) concentration, adsorbent dose, initial pH, temperature and agitation speed. The results of the equilibrium and kinetics of adsorption were well described by Langmuir isotherm and pseudo-second-order model, respectively. The thermodynamic parameters suggest spontaneous and endothermic nature of Cr(VI) adsorption onto MNPLB. The maximum adsorption capacity for MNPLB was calculated to be 434.78 mg/g and these particles even after Cr(VI) adsorption were collected effortlessly from the aqueous solution by a magnet. The desorption of Cr(VI)-adsorbed MNPLB was found to be more than 93.72% with spent MNPLB depicting eleven successive adsorption–desorption cycles.  相似文献   

17.
The increasing amount of cyanided tailings produced as a by-product has gained significant attention in recent years because of the rapid development of the gold industry and extensive exploitation of gold mineral resources. The effective use of these secondary resources is becoming an important and urgent problem for all environmental protection staff. Manganese-catalyzed ozonation for the pre-oxidation of cyanided tailings was studied and the effects of Mn2 + dosage, initial sulfuric acid concentration, ozone volume flow, temperature and agitation speed on pretreatment were examined. The optimum reaction conditions were observed to be: ore pulp density 2.5%, agitation speed 700 r/min, temperature 60°C, Mn2 + dosage 40 g/L, ozone volume flow 80 L/hr, initial sulfuric acid concentration 1 mol/L, and reaction time 6 hr. Under these conditions, the leaching rate of Fe and weight loss could reach 94.85% and 48.89% respectively. The leaching process of cyanided tailings by Mn2 +/O3 was analyzed, and it was found that the leaching of pyrite depends on synergetic oxidation by high-valent manganese and O3, in which the former played an important part.  相似文献   

18.
Batch mode experiments were conducted to study the removal of hexavalent chromium(Cr(Ⅵ)) from aqueous solutions using ultrasound-assisted aqueous solution ball milling.The results show that the reduction rate of Cr(Ⅵ) by ultrasound-assisted aqueous solution ball milling was significantly faster than that by ball milling or ultrasound treatment alone,and an initial Cr(Ⅵ) concentration of 166 mg/L could be decreased to 0.35 mg/L at 120 min.The decisive factors, including initial concentration of Cr(Ⅵ), p H value, ultrasonic frequency and filling gas, were studied. It was found that the optimal ultrasonic frequency for ultrasound-assisted aqueous solution ball milling device was 20 k Hz, and the rate of Cr(Ⅵ)reduction as a function of filling gas followed the order: Ar air N_2 O_2. Samples were characterized by X-ray diffraction, fluorescence measurements, atomic absorption and the diphenylcarbazide colorimetric method. The Cr(Ⅵ) transformed into a precipitate that could be removed from the contaminated water, after which the water could be reused.  相似文献   

19.
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron (Fe(III)), manganese (Mn(II)) and copper (Cu(II)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2 +–Fe3 + combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atpD mutant (with defective FoF1-ATPase) MS116. Addition of Mn2 +–Fe3 + combinations within the same concentration range had no effects on growth compared to control (without heavy metals). ATPase activity was increased in the presence of Mn2 +–Fe3 +, while together with 0.2 mmol/L N,N′-dicyclohexylcarbodiimide (DCCD), ATPase activity was decreased compared to control (when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential. The effects observed when Fe3 + was added separately disappeared in both cases, which might be a result of competing processes between Fe3 + and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria, and could be applied for regulation of stress response patterns in the environment.  相似文献   

20.
Batch experiments were conducted to evaluate fluoride removal by Al,Fe,and Ti-based coagulants and adsorbents,as well as the effects of coexisting ions and formation of aluminum–fluoride complexes on fluoride removal by co-precipitation with alum(Al_2(SO_4)_3·18H_2O).Aluminum sulfate was more efficient than the other coagulants for fluoride removal in the pH range between 6 and 8.Nano-crystalline TiO_2 was more effective for fluoride removal than Al and Fe hydroxides in a pH range of 3–5.Coexisting anions in water decreased the removal of fluoride in the order:phosphate(2.5 mg/L) arsenate(0.1 mg/L) bicarbonate(200 mg/L) sulfate(100 mg/L) = nitrate(100 mg/L) silicate(10 mg/L) at a pH of 6.0.The effect of silicate became more significant at pH 7.0.Calcium and magnesium improved the removal of fluoride.Zeta-potential measurements determined that the adsorption of fluoride shifted the PZC of Al(OH)_3 precipitates from 8.9 to 8.4,indicating the chemical adsorption of fluoride at the surface.The presence of fluoride in solution significantly increased the soluble aluminum concentration at pH 6.5.A Visual MINTEQ modeling study indicated that the increased aluminum solubility was caused by the formation of AlF~(2+),AlF~(+2),and AlF_3complexes.The AlF_x complexes decreased the removal of fluoride during co-precipitation with aluminum sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号