首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mg–Al–Cl layered double hydroxide(Cl-LDH) was prepared to simultaneously remove Cu(Ⅱ)and Cr(VI) from aqueous solution. The coexisting Cu(Ⅱ)(20 mg/L) and Cr(VI)(40 mg/L) were completely removed within 30 min by Cl-LDH in a dosage of 2.0 g/L; the removal rate of Cu(Ⅱ) was accelerated in the presence of Cr(VI). Moreover, compared with the adsorption of single Cu(Ⅱ) or Cr(VI), the adsorption capacities of Cl-LDH for Cu(Ⅱ) and Cr(VI) can be improved by 81.05% and 49.56%, respectively, in the case of coexisting Cu(Ⅱ)(200 mg/L) and Cr(VI)(400 mg/L). The affecting factors(such as solution initial p H, adsorbent dosage, and contact time) have been systematically investigated. Besides, the changes of p H values and the concentrations of Mg~(2+) and Al~(2+)in relevant solutions were monitored. To get the underlying mechanism, the Cl-LDH samples before and after adsorption were thoroughly characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. On the basis of these analyses, a possible mechanism was proposed. The coadsorption process involves anion exchange of Cr(VI) with Cl-in Cl-LDH interlayer, isomorphic substitution of Mg~(2+) with Cu~(2+), formation of Cu_2Cl(OH)_3precipitation, and the adsorption of Cr(VI) by Cu_2Cl(OH)_3. This work provides a new insight into simultaneous removal of heavy metal cations and anions from wastewater by Cl-LDH.  相似文献   

2.
During the aging process, ferrihydrite was transformed into mineral mixtures composed of different proportions of ferrihydrite, goethite, lepidocrocite and hematite. Such a transformation may affect the fixed ability of arsenic. In this study, the stability of Fe-As composites formed with As(V) and the minerals aged for 0, 1, 4, 10 and 30 days of ferrihydrite were systematically examined, and the effects of molar of ratios Fe/As were also clarified using kinetic methods combined with multiple spectroscopic techniques. The results indicated that As(V) was rapidly adsorbed on minerals during the initial polymerization process, which delayed both the ferrihydrite conversion and the hematite formation. When the Fe/As molar ratio was 1.875 and 5.66, the As(V) adsorbed by ferrihydrite began to release after 6 hr and 12 hr, respectively. The corresponding release amounts of As(V) were 0.55 g/L and 0.07 g/L, and the adsorption rates were 92.43% and 97.50% at 60 days, respectively. However, the As(V) adsorbed by the transformation products aged for 30 days of ferrihydrite began to release after adsorbed 30 days. The corresponding release amounts of As(V) were 0.25 g/L and 0.03 g/L, and the adsorption rates were 84.23% and 92.18% after adsorbed 60 days, for the Fe/As=1.875 and 5.66, respectively. Overall, the combination of As(V) with ferrihydrite and aged products transformed from a thermodynamically metastable phase to a dynamically stable state within a certain duration. Moreover, the aging process of ferrihydrite reduced the sorption ability of arsenate by iron (hydr)oxide but enhanced the stability of the Fe-As composites.  相似文献   

3.
A series of single-phase T-structured NdSrCu 1-x Co x O 4-δ with oxygen vacancies and T -structured Sm 1.8 Ce 0.2 Cu 1-x Co x O 4-δ (x: 0–0.4) with oxygen excess were prepared using ultrasound-assisted citric acid complexing method, and characterized by means of techniques such as thermogravimetric analysis and NO temperature-programmed desorption (NO-TPD). The catalytic activities of these materials were evaluated for the decomposition of NO. It was found that the NdSrCu 1-x Co x O 4-δ catalysts were of oxygen vacancies whereas the Sm 1.8 Ce 0.2 Cu 1-x Co x O 4-δ ones possessed excessive oxygen (i.e., over-stoichiometric oxygen); with a rise in Co doping level, the oxygen vacancy density of NdSrCu 1-x Co x O 4-δ decreased while the over-stoichiometric oxygen amount of Sm 1.8 Ce 0.2 Cu 1-x Co x O 4-δ increased. The NO-TPD results revealed that NO could be activated much easier over the oxygen-deficient perovskite-like oxides than over the oxygen-excessive perovskite-like oxides, with the NdSrCuO 3.702 catalyst showing the best efficiency in activating NO molecules. Under the conditions of 1.0% NO/helium, 2800 hr -1 , and 600–900°C, the catalytic activity of NO decomposition followed the order of NdSrCuO 3.702 NdSrCu 0.8 Co 0.2 O 3.736 NdSrCu 0.6 Co 0.4 O 3.789 Sm 1.8 Ce 0.2 Cu 0.6 Co 0.4 O 4.187 Sm 1.8 Ce 0.2 Cu 0.8 Co 0.2 O 4.104 Sm 1.8 Ce 0.2 CuO 4.045 , in concord with the sequence of decreasing oxygen vacancy or oxygen excess density. Based on the results, we concluded that the higher oxygen vacancy density and the stronger Cu 3+ /Cu 2+ redox ability of NdSrCu 1-x Co x O 4-δ account for the easier activation of NO and consequently improve the catalytic activity of NO decomposition over the catalysts.  相似文献   

4.
Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems.  相似文献   

5.
Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.  相似文献   

6.
In this study, a magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering (MPEOD) process with magnetic micro-particle conditioning–drainage under gravity–mechanical compression–electrical compression (MMPC–DG–MC–EC) stages was established to study the distribution and migration of water, extracellular polymeric substances (EPS), and other organic matter in the activated sludge (AS) matrix at each stage. Results showed that the MPEOD process could attain 53.52% water content (WC) in dewatered AS with bound water (BW) and free water (FW) reduction rates of 82.97% and 99.67%, respectively. The coagulation and time-delayed magnetic field effects of magnetic micro-particles (MMPs) along the MMPC–DG–MC stages initiated the transformation of partial BW to FW in AS. EC had a coupling driving effect of electro-osmosis and pressure on BW, and the changes in pH and temperature at EC stage induced the aggregation of AS flocs and the release of partial BW. Additionally, MMPs dosing further improved the dewatering performance of AS by acting as skeleton builders to provide water passages. Meanwhile, MMPs could disintegrate sludge cells and EPS fractions, thereby reducing tryptophan-like protein and byproduct-like material concentrations in LB-EPS as well as protein/polysaccharide ratio in AS matrix, which could improve AS filterability. At EC stage, the former four Ex/Em regions of fluorescence regional integration analysis for EPS were obviously reduced, especially the protein-like substances in LB- and TB-EPS, which contributed to improvement of AS dewaterability.  相似文献   

7.
The effects of interaction between Bacillus subtilis DBM and soil minerals on Cu(Ⅱ)and Pb(Ⅱ)adsorption were investigated.After combination with DBM,the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of kaolinite and goethite improved compared with the application of the minerals independently.The modeling results of potentiometric titration data proved that the site concentrations of kaolinite and goethite increased by 80%and 30%,respectively after combination with DBM.However,the involvement of functional groups in the DBM/mineral combinations resulted in lower concentrations of observed sites than the theoretical values and led to the enhancement of desorption rates by NH_4NO_3 and EDTA-Na_2.The DBM-mineral complexes might also help to prevent heavy metals from entering DBM cells to improve the survivability of DBM in heavy metal-contaminated environments.During the combination process,the extracellular proteins of DBM provided more binding sites for the minerals to absorb Cu(Ⅱ)and Pb(Ⅱ).In particular,an especially stable complexation site was formed between goethite and phosphodiester bonds from EPS to enhance the Pb(Ⅱ)adsorption capacity.So,we can conclude that the DBM–mineral complexes could improve the Cu(Ⅱ)and Pb(Ⅱ)adsorption capacities of minerals and protect DBM in heavy metal-contaminated environments.  相似文献   

8.
The discharge of heavy metal ions such as Cu~2+and Pb~2+poses a severe threat to public health and the environment owing to their extreme toxicity and bioaccumulation through food chains Herein, we report a novel organic–inorganic hybrid adsorbent, Al(OH)_3-poly(acrylamide dimethyldiallylammonium chloride)-graft-dithiocarbamate(APD), for rapid and effectiv removal of Cu~2+and Pb~2+. In this adsorbent, the "star-like" structure of Al(OH)3 poly(acrylamide-dimethyldiallylammonium chloride) served as the support of dithiocarbamat(DTC) functional groups for easy access of heavy metal ions and assisted development of larg and compact floccules. The synthesized adsorbent was characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). APD was demonstrated to hav rapid adsorption kinetics with an initial rate of 267.379 and 2569.373 mg/(g·min) as well a superior adsorption capacities of 317.777 and 586.699 mg/g for Cu~2+and Pb~2+respectively. Th adsorption process was spontaneous and endothermic, involving intraparticle diffusion and chemical interaction between heavy metal ions and the functional groups of APD. To assess it versatility and wide applicability, APD was also used in turbid heavy metal wastewater, and performed well in removing suspended particles and heavy metal ions simultaneously through flocculation and chelation. The rapid, convenient and effective adsorption of Cu~2+and Pb~2+give APD great potential for heavy metal decontamination in industrial applications.  相似文献   

9.
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and com...  相似文献   

10.
A series of single-phase T-structured NdSrCu_(1-x)Co_xO_(4-δ) with oxygen vacancies and T'-structured Sm_(1.8)Ce_(0.2)Cu_(1-x)Co_xO_(4-δ) (x:0-0.4) with oxygen excess were prepared using ultrasound-assisted citric acid complexing method, and characterized by means of techniques such as thermogravimetric analysis and NO temperature-progranuned desorption (NO-TPD). The catalytic activities of these materials were evaluated for the decomposition of NO. It was found that the NdSrCut_xCoxO4_b catalysts were of oxygen vacancies whereas the Sm_(1.8)Ce_(0.2)CU_(1-x)Co_xO_(4-δ) ones possessed excessive oxygen (i.e., over-stoichiometric oxygen); with a rise in Co doping level,the oxygen vacancy density of NdSrCu_(1-x)Co_xO_(4-δ) decreased while the over-stoichiometric oxygen amount of Sm_(1.8)Ce_(0.2)CU_(1-x)Co_xO_(4-δ)increased. The NO-TPD results revealed that NO could be activated much easier over the oxygen-deficient perovskite-like oxides than over the oxygen-excessive perovskite-like oxides, with the NdSrCuO_(3.702) catalyst showing the best efficiency in activating NO molecules. Under the conditions of 1.0% NO/helium, 2800 hr~(-1), and 600-900℃, the catalytic activity of NO decomposition followed the order of NdSrCuO_(3.702)> NdSrCu_(0.8)Co_(0.2)O_(3.736) > NdSrCu_(0.6)Co_(0.4)O_(3.789) > Sm_(1.8)Ce_(0.2)Cu_(0.6)Co_(0.4)O_(4.187)> Sm_(1.8)Ce_(0.2)Cu_(0.8)Co_(0.2)O_(4.104)> Sm_(1.8)Ce_(0.2)CuO_(4.045), in concord with the sequence of decreasing oxygen vacancy or oxygen excess density. Based on the results, we concluded that the higher oxygen vacancy density and the stronger Cu~(3+)/Cu~(2+) redox ability of NdSrCu_(1-x)Co_xO_(4-δ) account for the easier activation of NO and consequently improve the catalytic activity of NO decomposition over the catalysts.  相似文献   

11.
Polybrominated diphenyl ethers (PBDEs) as ubiquitous persistent organic pollutants have attracted much attention in recent years. Exposure to PBDEs could induce a high health risk for children. The aim of this study was to investigate the PBDEs exposure of children (9–12 years) from Taizhou, China. Fifty-eight blood samples were collected in one school in a mountainous area in Taizhou. The concentrations of Σ9PBDEs (sum of BDE-28, -47, -99, -100, -153, -154, -183, -197 and -209) ranged from 2.66 to 33.9 ng/g lipid wet (lw) with a median of 7.22 ng/g lw. These concentrations were lower than those of children in USA, but close to European and Asian general population levels. The results showed that children in Taizhou countryside were at a low level of PBDEs exposure. The predominant congener was BDE-209, followed by BDE-28, -47, -197 and -153. High abundance of BDE-209 was consistent with the pollution background of PBDEs in China characterized by high brominated congeners as main pollutants.  相似文献   

12.
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils.  相似文献   

13.
Fe–Mn binary oxide (FMBO) possesses high efficiency for As(III) abatement based on the good adsorption affinity of iron oxide and the oxidizing capacity of Mn(IV), and the composition and structure of FMBO play important roles in this process. To compare the removal performance and determine the optimum formula for FMBO, magnetic graphene oxide (MRGO)–FMBO and MRGO–MnO2 were synthesized with MRGO as a carrier to improve the dispersity of the adsorbents in aquifers and achieve magnetic recycling. Results indicated that MRGO–FMBO had higher As(III) removal than that of MRGO–MnO2, although the ratios of Fe and Mn were similar, because the binary oxide of Fe and Mn facilitated electron transfer from Mn(IV) to As(III), while the separation of Mn and Fe on MRGO–MnO2 restricted the process. The optimal stoichiometry x for MRGO–FMBO (MnxFe3-xO4) was 0.46, and an extraordinary adsorption capacity of 24.38 mg/g for As(III) was achieved. MRGO–FMBO showed stable dispersive properties in aquifers, and exhibited excellent practicability and reusability, with a saturation magnetization of 7.6 emu/g and high conservation of magnetic properties after 5 cycles of regeneration and reuse. In addition, the presence of coexisting ions would not restrict the practical application of MRGO–FMBO in groundwater remediation. The redox reactions of As(III) and Mn(IV) on MRGO–FMBO were also described. The deprotonated aqueous As(III) on the surface of MRGO–FMBO transferred electrons to Mn(IV), and the formed As(V) oxyanions were bound to ferric oxide as inner-sphere complexes by coordinating their “–OH” groups with Mn(IV) oxides at the surface of MRGO–FMBO. This work could provide new insights into high-performance removal of As(III) in aquifers.  相似文献   

14.
Noroviruses (NoV) are a major cause of gastroenteritis worldwide. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been increasingly reported in NoV outbreaks in Asia, and has also been described in Europe and North America. In this study, sewage samples were investigated to study the occurrence and genetic diversity of NoV genogroup II (GII) along a 6-year period. Moreover, the spread of GII.17 strains (first appearance and occurrence along time) was specifically assessed. A total of 122 sewage samples collected from 2011 to 2016 from four wastewater treatment plants in Rome (Italy) were initially tested using real-time RT-(q)PCR for GII NoV. Positive samples were subsequently subjected to genotypic characterization by RT-nested PCRs using broad-range primes targeting the region C of the capsid gene of GII NoV, and specific primers targeting the same region of GII.17 NoV. In total, eight different genotypes were detected with the broad-range assay: GII.1 (n = 6), GII.2 (n = 8), GII.3 (n = 3), GII.4 (n = 13), GII.6 (n = 3), GII.7 (n = 2), GII.13 (n = 2), and GII.17 (n = 3), with the latter two genotypes detected only in 2016. Specific amplification of GII.17 NoV was successful in 14 out of 110 positive samples, spanned over the years 2013–2016. The amplicons of the broad-range PCR, pooled per year, were further analyzed by next-generation sequencing (NGS) for a deeper analysis of the genotypes circulating in the study period. NGS confirmed the circulation of GII.17 NoV since 2013 and detected, beyond the eight genotypes identified by Sanger sequencing, three additional genotypes regarded as globally uncommon: GII.5, GII.16, and GII.21. This study provides evidence that GII.17 NoV Kawasaki has been circulating in the Italian population before its appearance and identification in clinical cases, and has become a major genotype in 2016. Our results confirm the usefulness of wastewater surveillance coupled with NGS to study the molecular epidemiology of NoV and to monitor the emergence of NoV strains.  相似文献   

15.
Fe–Mn binary oxide(FMBO) possesses high efficiency for As(Ⅲ) abatement based on the good adsorption affinity of iron oxide and the oxidizing capacity of Mn(Ⅳ), and the composition and structure of FMBO play important roles in this process.To compare the removal performance and determine the optimum formula for FMBO, magnetic graphene oxide(MRGO)–FMBO and MRGO–MnO_2 were synthesized with MRGO as a carrier to improve the dispersity of the adsorbents in aquifers and achieve magnetic recycling.Results indicated that MRGO–FMBO had higher As(Ⅲ) removal than that of MRGO–MnO_2,although the ratios of Fe and Mn were similar, because the binary oxide of Fe and Mn facilitated electron transfer from Mn(Ⅳ) to As(Ⅲ), while the separation of Mn and Fe on MRGO–MnO_2 restricted the process.The optimal stoichiometry x for MRGO–FMBO(Mn_xFe_(3-x)O_4) was 0.46, and an extraordinary adsorption capacity of 24.38 mg/g for As(Ⅲ) was achieved.MRGO–FMBO showed stable dispersive properties in aquifers, and exhibited excellent practicability and reusability, with a saturation magnetization of 7.6 emu/g and high conservation of magnetic properties after 5 cycles of regeneration and reuse.In addition, the presence of coexisting ions would not restrict the practical application of MRGO–FMBO in groundwater remediation.The redox reactions of As(Ⅲ) and Mn(Ⅳ) on MRGO–FMBO were also described.The deprotonated aqueous As(Ⅲ) on the surface of MRGO–FMBO transferred electrons to Mn(Ⅳ), and the formed As(Ⅴ) oxyanions were bound to ferric oxide as inner-sphere complexes by coordinating their "–OH" groups with Mn(Ⅳ)oxides at the surface of MRGO–FMBO.This work could provide new insights into highperformance removal of As(Ⅲ) in aquifers.  相似文献   

16.
17.
Cadmium(Cd) and arsenic(As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar(HFMB), a novel ternary material,to perform this task, wherein scanning electron microscopy(SEM) combined with EDS(SEMEDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar(11.06 mg/g, 0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy(XPS)and Fourier-transform infrared spectroscopy(FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB, while ligand exchange was the adsorption mechanism that bound As(Ⅴ).  相似文献   

18.
Graphene oxide is a very high capacity adsorbent due to its functional groups and π?π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.  相似文献   

19.
20.
The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号