首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Silver nanoparticles (AgNPs) are widely used in many consumer products, whereas their environmental behaviors in natural aquatic systems remain unknown, especially in natural brackish media. Therefore, it is urgent to investigate the environmental fate of AgNPs in natural brackish waters. Here, we investigated the stability of citrate-coated AgNPs in natural brackish water collected from 6 different sites with distinct salinities in the Xinglinwan Reservoir, located in Xiamen City, southeast China. The obtained results showed that AgNP colloids remained stable in low-salinity waters, which was mainly determined by the effects of dissolved organic matter (DOM) promoting the stability of the nanoparticles. However, the environmental fate of AgNPs in high-salinity waters was dominated by the salinity or ionic strength, especially the free ion concentrations of Cl?, SO42?, or S2?, resulting in rapid sedimentation and dissolution. In addition, both DOM and salinity contributed to the environmental behavior of AgNPs in moderate-salinity waters, ultimately resulting in either colloidal stability or sedimentation. Overall, these results may reveal that AgNPs remain relatively stable for a long period in low-salinity natural waters, and that the stability might gradually decrease as AgNPs are transferred from freshwaters through brackish waters and eventually end up in seawater along the bay. Our findings also further indicate that the toxicity and potential risks of AgNPs may present more serious threats to the environment and organisms in natural freshwaters than in natural estuarine systems or seawater.  相似文献   

2.
Significant iron release from cast iron pipes in water distribution systems (WDSs), which usually occurs during the source water switch period, is a great concern of water utilities because of the potential occurrence of “red water” and customer complaints. This study developed a new method which combined in-situ water stagnation experiments with mathematical models and numerical simulations to predict the iron release caused by source water switch. In-situ water stagnation experiments were conducted to determine the total iron accumulation in nine cast iron pipes in-service in Beijing when switching the local water to treated Danjiangkou Reservior water. Results showed that the difference in the concentration increment of total iron in 24 hr (ΔCITI,24), i.e. short-term iron release, caused by source water switch was mainly dependent on the difference in the key quality parameters (pH, hardness, nitrate, Larson Ratio and dissolved oxygen (DO)) between the two source waters. The iron release rate (RFe) after switch, i.e. long-term iron release, was closely related to the pipe properties as well as the DO and total residual chlorine (TRC) concentrations. Mathematical models of ΔCITI,24 and RFe were developed to quantitatively reveal the relationship between iron release and the key quality parameters. The RFe model could successfully combine with EPANET-MSX, a numerical simulator of water quality for WDSs to extend the iron release modeling from pipe level to network level. The new method is applicable to predicting iron release during source water switch, thus facilitating water utilities to take preventive actions to avoid “red water”.  相似文献   

3.
A hygroscopic tandem differential mobility analyser (H-TDMA) was used to observe the size-resolved hygroscopic characteristics of submicron particles in January and April 2018 in urban Beijing. The probability distribution of the hygroscopic growth factor (HGF-PDF) in winter and spring usually showed a bimodal pattern, with more hygroscopic mode (MH) being more dominant. The seasonal variation in particle hygroscopicity was related to the origin of air mass, which received polluted southerly air masses in spring and clean northwesterly air masses in winter. Particles showed stronger hygroscopic behaviour during heavy pollution episodes (HPEs) with elevated concentrations of secondary aerosols, especially higher mass fraction of nitrate, which were indicated using the PM2.5 (particulate matter with diameter below 2.5 µm) mass concentration normalised by CO mass concentration. The hygroscopic parameter (κ) values were calculated using H-TDMA (κhtdma) and chemical composition (κchem). The closure study showed that κchem was overestimated in winter afternoon when compared with κhtdma, because the organic particle hygroscopic parameter (κorg) was overestimated in the calculations. It was influenced by the presence of a high concentration of hydrocarbon-like organic aerosol (HOA) with a weak water uptake ability. A positive relationship was observed between κorg and the ratio of oxygenated organic aerosol (OOA) and HOA, thereby indicating that the strong oxidation state enhanced the hygroscopicity of the particles. This study revealed the effect of local emission sources and secondary aerosol formation processes on particle hygroscopicity, which is of great significance for understanding the pollution formation mechanism in the North China Plain.  相似文献   

4.
Low-density polyethylene (LDPE) has been widely used as a sorbent for passive sampling of hydrophobic organic contaminants (HOCs) in aquatic environments. However, it has seen only limited application in passive sampling for measurement of freely dissolved concentrations of parent and substituted PAHs (SPAHs), which are known to be toxic, mutagenic and carcinogenic. Here, the 16 priority PAHs and some typical PAHs were selected as target compounds and were simultaneously determined by gas chromatography–mass spectrometer (GC–MS). Some batch experiments were conducted in the laboratory to explore the adsorption kinetics of the target compounds in LDPE membranes. The results showed that both PAHs and SPAHs could reach equilibrium status within 19–38?days in sorption kinetic experiments. The coefficients of partitioning between LDPE film (50?μm thickness) and water (KLDPE) for the 16 priority PAHs were in good agreement with previously reported values, and the values of KLDPE for the 9 SPAHs are reported in this study for the first time. Significant linear relationships were observed, i.e., log KLDPE?=?0.705?×?log KOW?+?1.534 for PAHs (R2?=?0.8361, p?<?0.001) and log KLDPE?=?0.458?×?log KOW?+?3.092 for SPAHs (R2?=?0.5609, p?=?0.0077). The selected LDPE film was also proven to meet the condition of “zero sink” for the selected target compounds. These results could provide basic support for the configuration and in situ application of passive samplers.  相似文献   

5.
Incorporation of a carbon-based nutrient enhancement strategy for drinking water biofiltration is an attractive option, especially for source waters which contain recalcitrant organics. This study compared biofilters that were operated in parallel and individually enhanced with amino acids (including alanine, phenylalanine, and tryptophan), inulin, and sucrose to increase biomass concentration and promote biodegradation of dissolved organic carbon (DOC) in the source water, including disinfection by-product (DBP) precursors. Biomass activity was characterized by measuring adenosine tri-phosphate (ATP), dissolved oxygen (DO) consumption, and through the use of laccase and esterase enzyme assays. Performance was evaluated in terms of headloss, turbidity, pH, DOC, UV254, and DBP formation potential (DBP FP). The introduction of carbon-based nutrients significantly increased biomass activity, where ATP values peaked at 976?ng/g of filter media, 853?ng/g, and 513?ng/g for amino acids, inulin, and sucrose-spiked biofilters, respectively, while a non-spiked control only reached 104?ng/g. DO utilization by the enhanced biofilters was significantly higher than the control, with a strong correlation between ATP and DO uptake observed for all filters (R2?>?0.74). Laccase and esterase enzyme activities of enhanced biofilters were also elevated (p?> 0.05), suggesting greater biodegradation potential. Operational parameters such as headloss development and turbidity control were not impaired by carbon supplementation strategies or an increase in biomass concentration and activity. However, the enhancement strategy did not provide improvement in terms of source water carbon removal (DOC and UV254) or DBP FP when treated filters were compared to a control.  相似文献   

6.
The impact of Fe concentrations on the growth of Microcystisaeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density, total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M. aeruginosa to different concentration gradients of Fe(III) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were: (1) decelerated when the Fe(III) concentration was lower than 50 μg/L in the solutions, (2) promoted and positively related to the increase of Fe(III) concentration from 100 to 500 μg/L in the solutions over the experimental period, and (3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(III) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(III)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(III) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5 according to the functions for different Fe(III) concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(III) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.  相似文献   

7.
In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low (LL), moderate (ML) and high light intensities (HL) (2, 25 and 80 μmol photons/(m2·sec)), respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake (Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant (Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates (Vm(Si)) at HL and Km(Si) at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.  相似文献   

8.
Currently, vehicle-related particulate matter is the main determinant air pollution in the urban environment. This study was designed to investigate the level of fine (PM2.5) and coarse particle (PM10) concentration of roadside vehicles in Addis Ababa, the capital city of Ethiopia using artificial neural network model. To train, test and validate the model, the traffic volume, weather data and particulate matter concentrations were collected from 15 different sites in the city. The experimental results showed that the city average 24-hr PM2.5 concentration is 13%–144% and 58%–241% higher than air quality index (AQI) and world health organization (WHO) standards, respectively. The PM10 results also exceeded the AQI (54%–65%) and WHO (8%–395%) standards. The model runs using the Levenberg-Marquardt (Trainlm) and the Scaled Conjugate Gradient (Trainscg) and comparison were performed, to identify the minimum fractional error between the observed and the predicted value. The two models were determined using the correlation coefficient and other statistical parameters. The Trainscg model, the average concentration of PM2.5 and PM10 exhaust emission correlation coefficient were predicted to be (R2 = 0.775) and (R2 = 0.92), respectively. The Trainlm model has also well predicted the exhaust emission of PM2.5 (R2 = 0.943) and PM10 (R2 = 0.959). The overall results showed that a better correlation coefficient obtained in the Trainlm model, could be considered as optional methods to predict transport-related particulate matter concentration emission using traffic volume and weather data for Ethiopia cities and other countries that have similar geographical and development settings.  相似文献   

9.
10.
11.
12.
In this study, qPCR was used to quantify opportunistic premise plumbing pathogens (OPPPs) and free-living amoebae in 11 tap water samples collected over four seasons from a city in northern China. Results demonstrated that the average numbers of gene copies of Legionella spp. and Mycobacterium spp. were significantly higher than those of Aeromonas spp. (p?<?0.05). Legionella spp. and Mycobacterium spp. were 100% (44/44) positively detected while P. aeruginosa and Aeromonas spp. were 79.54% (35/44) and 77.27% (34/44) positively detected. Legionella pneumophila was only detected in 4 samples (4/44), demonstrating its occasional occurrence. No Mycobacterium avium or Naegleria fowleri was detected in any of the samples. The average gene copy numbers of target OPPPs were the highest in summer, suggesting seasonal prevalence of OPPPs. Average gene copy numbers of OPPPs in the taps of low-use-frequency were higher than in taps of high-use-frequency, but the difference was not significant for some OPPPs (p?>?0.05). Moderate negative correlations between the chlorine concentration and the gene copy numbers of OPPPs were observed by Spearman analysis (rs ranged from ? 0.311 to ? 0.710, p?<?0.05). However, no significant correlations existed between OPPPs and AOC, BDOC, or turbidity. Moderate positive correlations were observed between the target microorganisms, especially for Acanthamoeba spp., through Spearman analysis (p?<?0.05). Based on our studies, it is proposed that disinfectant concentration, season, taps with different-use frequency, OPPP species, and potential microbial correlations should be considered for control of OPPPs in tap water.  相似文献   

13.
Freshwater reservoirs are regarded as an important anthropogenic source of methane (CH4) emissions. The temporal and spatial variability of CH4 emissions from different reservoirs results in uncertainty in the estimation of the global CH4 budget. In this study, surface water CH4 concentrations were measured and diffusive CH4 fluxes were estimated via a thin boundary layer model in a temperate river–reservoir system in North China, using spatial (33 sites) and temporal (four seasons) monitoring; the system has experienced intensive aquaculture disturbance. Our results indicated that the dissolved CH4 concentration in the reservoir ranged from 0.07 to 0.58 µmol/L, with an annual average of 0.13 ± 0.10 µmol/L, and the diffusive CH4 flux across the water–air interface ranged from 0.66 to 3.61 μmol/(m2•hr), with an annual average of 1.67 ± 0.75 μmol/(m2•hr). During the study period, the dissolved CH4 concentration was supersaturated and was a net source of atmospheric CH4. Notably, CH4 concentration and diffusive flux portrayed large temporal and spatial heterogeneity. The river inflow zone was determined to be a hotspot for CH4 emissions, and its flux was significantly higher than that of the tributary and main basin; the CH4 flux in autumn was greater than that in other seasons. We also deduced that the CH4 concentration/diffusive flux was co-regulated mainly by water temperature, water depth, and water productivity (Chla, trophic status). Our results highlight the importance of considering the spatiotemporal variability of diffusive CH4 flux from temperate reservoirs to estimate the CH4 budget at regional and global scales.  相似文献   

14.
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al. (2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination (R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1, 2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area (%) in comparison with the averaged relative peak area of each method at 0 day. The indices of the bottle full of water method were the lowest (99.5%-108.5%) compared to the indices of vacuum bag and vacuum vial methods (119%-217%). Meanwhile, the gas chromatograph determination of other gas components (O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.  相似文献   

15.
The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (FT) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains. The lowest humification of DOM and the highest proportion of C1 in waters during the initial cyanobacterial growth indicate that fresh algae are the main source. The highest molecular weight of DOM and FT of the C2 in sediments during cyanobacterial outbreaks indicate the concurrent deposition of undegraded cyanobacterial remains and microbial degradation. The components of DOM are affected mainly by the dissolved total phosphorus in waters, while the temperature drives the annual cycle of cyanobacteria. The decreasing C1 in sediments and increasing nutrients in waters from the cyanobacterial incubation to outbreak indicate that mineralization of algal organic matter contributes importantly to the release of internal nutrients, with the strongest release of phosphorus observed during the early growth of cyanobacteria. The humic-like C2 and C3 components could also affect the dynamics of internal phosphorus through the formation of organic colloids and organic–inorganic ligands. The results show that the degradation of DOM leads to nutrients release and thus supports the continuous growth of cyanobacteria in eutrophic Lake Chaohu.  相似文献   

16.
17.
Freshwater cyanobacterial blooms have drawn public attention because they threaten the safety of water resources and human health worldwide. Heavy cyanobacterial blooms outbreak in Lake Taihu in summer annually and vanish in other months. To find out the factors impacting the cyanobacterial blooms, the present study measured the physicochemical parameters of water and investigated the composition of microbial community using the 16S rRNA gene and internal transcribed spacer amplicon sequencing in the months with or without bloom. The most interesting finding is that two major cyanobacteria, Planktothrix and Microcystis, dramatically alternated during a cyanobacterial bloom in 2016, which is less mentioned in previous studies. When the temperature of the water began increasing in July, Planktothrix appeared first and showed as a superior competitor for M. aeruginosa in NO3?-rich conditions. Microcystis became the dominant genus when the water temperature increased further in August. Laboratory experiments confirmed the influence of temperature and the total dissolved nitrogen (TDN) form on the growth of Planktothrix and Microcystis in a co-culture system. Besides, species interactions between cyanobacteria and non-cyanobacterial microorganisms, especially the prokaryotes, also played a key role in the alteration of Planktothrix and Microcystis. The present study exhibited the alteration of two dominant cyanobacteria in the different bloom periods caused by the temperature, TDN forms as well as the species interactions. These results helped the better understanding of cyanobacterial blooms and the factors which contribute to them.  相似文献   

18.
As a biosorbent, algae are frequently used for the biotreatment or bioremediation of water contaminated by heavy metal or radionuclides. However, it is unclear that whether or not the biomineralization of these metal or radionuclides can be induced by algae in the process of bioremediation and what the mechanism is. In this work, Ankistrodsemus sp. has been used to treat the uranium-contaminated water, and more than 98% of uranium in the solution can be removed by the alga, when the initial uranium concentration ranges from 10 to 80 mg/L. Especially, an unusual phenomenon of algae-induced uranium biomineralization has been found in the process of uranium bioremediation and its mineralization mechanism has been explored by multiple approaches. It is worth noticing that the biomineralization of uranium induced by Ankistrodsemus sp. is significantly affected by contact time and pH. Uranium is captured rapidly on the cell surface via complexation with the carboxylate radical, amino and amide groups of the microalgae cells, which provides nucleation sites for the precipitation of insoluble minerals. Uranium stimulates Ankistrodsemus sp. to metabolize potassium ions (K+), which may endow algae with the ability to biomineralize uranium into the rose-like compreignacite (K2[(UO2)6O4(OH)6]•8H2O). As the time increased, the amorphous gradually converted into compreignacite crystals and a large number of crystals would expand over both inside and outside the cells. To the best of our knowledge, this is the first investigated microalgae with a time-dependent uranium biomineralization ability and superior tolerance to uranium. This work validates that Ankistrodsemus sp. is a promising alga for the treatment of uranium-contaminated wastewater.  相似文献   

19.
The emissions of NO2 and HONO from the KNO3 photolysis in the presence of TiO2 were measured using a round-shape reactor coupled to a NOx analyzer. TiO2 played important roles in the emission flux density of NO2 (RNO2) and HONO (RHONO), depending on crystal structures and mass ratios of TiO2. RNO2 and RHONO significantly decreased with increasing the rutile and anatase mass ratios from 0 to 8 and 0.5 wt.%, respectively. Nevertheless, with further increasing the anatase mass ratio to 8 wt.%, there was an increase in RNO2 and RHONO. RNO2 on KNO3/TiO2/SiO2 had positive correlation with the KNO3 mass (1–20 wt.%), irradiation intensity (80–400 W/m2) and temperature (278–308 K), while it had the maximum value at the relative humidity (RH) of 55%. RHONO on KNO3/TiO2/SiO2 slightly varied with the KNO3 mass and temperature, whereas it increased with the irradiation intensity and RH. In addition, the mechanism for NO2 and HONO emissions from the nitrates photolysis and atmospheric implications were discussed.  相似文献   

20.
Methyl-hydroxy-cyclohexadienyl radicals (OTAs) are the key products of the photooxidation of toluene, with implications for the fate of toluene. Hence, we investigated the photooxidation mechanisms and kinetics of three main OTAs (o-OTA, m-OTA, and p-OTA) with NO2 using quantum chemical calculations as well as the fate of OTAs under the different concentration ratios of NO2 and O2. The mechanism results show that the pathway of H-abstraction by NO2 to anti-HONO (anti-H-abstraction) is more favorable than the syn-H-abstraction pathway, because the strong interaction between OTAs and NO2 is formed in the transition states of the anti-H-abstraction pathways. The branching ratios of the anti-H-abstraction pathways are more than 99% in the temperature range of 216−298 K. The total rate constant of the OTA-NO2 reaction is 9.9 × 10−12 cm3/(molecule∙sec) at 298 K, which is contributed about 90% by o-OTA + NO2, and the main products are o-cresol and anti-HONO. The half-lives of the OTA-NO2 reaction in some polluted areas of China are 35 times longer than those of the OTA-O2 reaction. In the atmosphere, the NO2- and O2- initiated reactions of OTAs have the same ability to form cresols as [NO2] is up to 142.1 ppmV, which is impossible to achieve. It implies that under the experimental condition, the [NO2]/[O2] should be controlled to be less than 7.8 × 10−5 to simulate real atmospheric oxidation of toluene. Our results reveal that for the photooxidation of toluene, the yield of cresol is not affected by the concentration of NO2 under the atmospheric environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号