首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Field measurements have shown that organic surfactants are significant components of atmospheric aerosols. While fatty acids, among other surfactants, are prevalent in the atmosphere, the influence of these species on the chemical and physical properties of atmospheric aerosols remains not fully characterized. In order to assess the phase in which particles may exist, a detailed study of the deliquescence of a model surfactant aerosol has been carried out. Sodium oleate was chosen as a surfactant proxy relevant in atmospheric aerosol. Sodium oleate micelle aerosol particles were generated nebulizing a sodium oleate aqueous solution. In this study, the water uptake and phase transition of sodium oleate aerosol particles have been studied in a room temperature aerosol flow tube system (AFT) using Fourier transform infrared (FTIR) spectroscopy. Aerosol morphology and elemental composition were also analysed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) techniques. The particles are homogeneously distributed as ellipsoidal-shape aggregates of micelles particles with an average size of ∼1.1 μm. The deliquescence by the sodium oleate aerosol particles was monitored by infrared extinction spectroscopy, where the dried aerosol particles were exposed to increasing relative humidity as they passed through the AFT. Observations of the infrared absorption features of condensed phase liquid water enable to determine the sodium oleate deliquescence phase transition at 88±2%.  相似文献   

2.
The dominant optical characteristics of Southeast Asia (SEA)'s regional aerosols were determined from the cluster analysis of the 26 AERONET aerosol inversion products, including aerosol light scattering/absorption indicators and aerosol size/shape parameters retrieved from 2003 to 2007. The data sets were acquired from four stations: Bac Giang in Vietnam and Mukdahan, Pimai, and Silpakorn University in Thailand. The cluster analysis showed agreement among the aerosol optical characteristics, land cover/uses, season as the surrogate of the prevailing winds, and observations from the literature. The results of this study showed that during the northeast prevailing winds from mid-September to December, the high aerosol exposure events were most frequently observed over the upwind station and less often over the downwind stations. This aerosol exhibited a single scattering albedo (SSA) of approximately 0.95 (440 nm), a relatively low refractive index, and a larger fine-mode size, suggesting it had the characteristics of urban/industrial aerosols reported in the literature. These aerosol sources were upwind from Bac Giang, probably in eastern China. From January to April, the aerosol exhibited a lower SSA of approximately 0.90, a higher refractive index, and a smaller fine-mode size, suggesting biomass burning smoke reported in the literature. The SEA urban aerosol exhibited a mean SSA of approximately 0.90 (440 nm) or lower, and the coarse-mode aerosol, possibly road dust or soil dust, played a role from October to January when seasonal winds are strongest. The results from a canonical discriminant function analysis suggest that the dominant SEA aerosol clusters tended to be separated by a canonical function positively correlated with SSA, the fine-mode asymmetry factor, and the overall fine-mode size and negatively correlated with the refractive index.  相似文献   

3.
This paper describes the results of a study to determine the total mass and the mass distribution of atmospheric aerosols, especially that mass associated with particles greater than 10 μm diameter. This study also determined what fraction of the total aerosol mass a standard high-volume air sampler collects and what fraction and size interval settle out on a dust fall plate. A special aerosol sampling system was designed for this study to obtain representative samples of large airborne particles. A suburban sampling site was selected because no local point sources of aerosols existed nearby. Samples were collected under various conditions of wind velocity and direction to obtain measurements on different types of aerosols.

Study measurements show that atmospheric particulate matter has a bimodal mass distribution. Mass associated with large particles mainly ranged from 5 to 100 μm in size, while mass associated with small particles ranged from an estimated 0.03 to 5 μm in size. Combined, these two distributions produced a bimodal mass distribution with a minimum around 5 μm diameter. The high-volume air sampler was found to collect most of the total aerosol mass, not just that fraction normally considered suspended particulate. Dust fall plates did not provide a good or very useful measure of total aerosol mass. The two fundamental processes of aerosol formation, condensation and dispersion appear to account for the formation of a bimodal mass distribution in both natural and anthropogenic aerosols. Particle size distribution measurements frequently are in error because representative samples of large airborne particles are not obtained. Considering this descrepancy, air pollution regulations should specify or be based upon an upper particle size limit.  相似文献   

4.
By using observations from the Aerosol Robotic Network (AERONET), aerosol types are classified according to dominant size mode and radiation absorptivity as determined by fine-mode fraction (FMF) and single-scattering albedo (SSA), respectively. The aerosol type from anthropogenic sources is significantly different with regard to location and season, while dust aerosol is observed persistently over North Africa and the Arabian Peninsula. For four reference locations where different aerosol types are observed, time series and optical properties for each aerosol type are investigated. The results show that aerosol types are strongly affected by their sources and partly affected by relative humidity. The analysis and methodology of this study can be used to compare aerosol classification results from satellite and chemical transport models, as well as to analyze aerosol characteristics on a global scale over land for which satellite observations need to be improved.  相似文献   

5.
PM2.5 aerosols were sampled and atmospheric 222Rn (radon) was measured, at Hong Kong, China, over 3 years 2001–2003. The aerosol samples were analysed using accelerator-based Ion Beam Analysis (IBA) techniques to provide quantitative information on 21 of their major and minor elemental contributions. The radon concentration on aerosol sampling days was then used to classify the degree of land contact (high or low) experienced by air masses en route to the receptor site. It was found that elements known to originate from anthropogenic sources (e.g. Zn, K, Br, Pb and Black Carbon) were positively correlated with observed radon concentration. An eight-factor Positive Matrix Factorisation (PMF) analysis was performed on the data set, which resulted in elemental profiles (“fingerprints”) for eight potential sources and we identified source factors that were correlated with radon. The Potential Source Contribution Function technique was then used to identify the geographic regions most likely to have significantly contributed to the aerosol samples collected at the receptor site.  相似文献   

6.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

7.
Atmospheric input of fixed nitrogen species to the ocean has attracted considerable attention from the viewpoint of the oceanic biogeochemical cycle of nitrogen, although few measurements of organic nitrogen compounds in atmospheric aerosols have been extensively conducted over remote ocean areas. In this study, we report the geographical distribution of dissolved free amino acids (DFAA) in the water-soluble fraction of two size-segregated marine aerosols over the western North Pacific. The concentrations of DFAA showed higher values over the region north of 30°N, whereas they clearly decreased south of 30°N. Approximately 59–96% of DFAA was found in fine-mode particles. Long-range transport from continental sources could largely contribute to DFAA in marine aerosols over the remote North Pacific.  相似文献   

8.
The aerosol samples were collected from a high elevation mountain site, Nainital, in India (1958 m asl) during September 2006 to June 2007 and were analyzed for water-soluble inorganic species, total carbon, nitrogen, and their isotopic composition (δ13C and δ15N, respectively). The chemical and isotopic composition of aerosols revealed significant anthropogenic influence over this remote free-troposphere site. The amount of total carbon and nitrogen and their isotopic composition suggest a considerable contribution of biomass burning to the aerosols during winter. On the other hand, fossil fuel combustion sources are found to be dominant during summer. The carbon aerosol in winter is characterized by greater isotope ratios (av. ?24.0?‰), mostly originated from biomass burning of C4 plants. On the contrary, the aerosols in summer showed smaller δ13C values (?26.0?‰), indicating that they are originated from vascular plants (mostly of C3 plants). The secondary ions (i.e., SO4 2?, NH4 +, and NO3 ?) were abundant due to the atmospheric reactions during long-range transport in both seasons. The water-soluble organic and inorganic compositions revealed that they are aged in winter but comparatively fresh in summer. This study validates that the pollutants generated from far distant sources could reach high altitudes over the Himalayan region under favorable meteorological conditions.  相似文献   

9.
For the determination of effects of contaminated crude soil on the content of trace elements in the atmospheric aerosol, trace elements in crude soil samples from within the area of influence of local resuspension were analysed. The obtained results were used for determining the contribution of local resuspension on contents of trace elements in the atmospheric aerosol using the enrichment factors (EF) method. The content of trace elements in a crude soil could arise from the geochemical background of the soil or from anthropogenic contributions. Analysis of the quantile showed that Cd, Se and Ni originate from local emission sources. PCA showed that four groups of sources contributed to the content of trace elements in PM in part of the receptor. Using EF, it was ascertained that local resuspension of crude soil particles had a dominant influence on the content of Fe, Mn and Ti in the atmospheric aerosol, and that local resuspension had no influence on the content of Se in the atmospheric aerosol. Dust originating from deserts of North Africa and Middle East, through long-range transport and through resuspension of settled dust particles, significantly contributes to the content of Fe, Mn and Ti in the atmospheric aerosol. Cd originated from contaminated crude soil. The other investigated elements originated partly from crude soil but also from some other emission sources in the region.  相似文献   

10.
As already done for aerosols, natural and anthropogenic Pb, Cd, Cu, and Zn concentrations in rainwater have been separated by a statistical numerical method. The natural part is found to strongly decrease from aerosol to rainwater: from 10–20% to 1% for Pb, Cu and Zn, and from 0.9% to 0.6% for Cd. The mean natural and anthropogenic levels in total atmospheric deposition is estimated.  相似文献   

11.
12.
Simultaneous measurements of gaseous species and fine-mode, particulate inorganic components were performed at the University of Seoul, Seoul in Korea. In the simultaneous measurements, a certain level of nitrous acid (HONO) was observed in the gas-phase, indicating possible heterogeneous HONO production on the surface of the ambient aerosols. On the other hand, high particulate nitrite (NO2?) concentrations of 1.41(±2.26) μg/m3 were also measured, which sometimes reached 18.54 μg/m3. In contrast, low HONO-to-NO2 ratios of 0.007(±0.006) were observed in Seoul. This indicates that a significant fraction of HONO is dissolved in atmospheric aerosols. Around the Seoul site, sufficient alkalinity may have been provided to the atmospheric aerosols from the excessive presence of NH3 in the gas-phase. Due to the alkaline particulate conditions (defined in this study as a particle pH >~3.29), the HONO molecules produced at the surface of the atmospheric aerosols appeared to have been converted into particulate nitrite, thereby preventing their further participation in the atmospheric O3/NOy/HOx photochemical cycles. It was estimated that a minimum average of 65% of HONO was captured by alkaline, anthropogenic, urban particles in the Seoul measurements.  相似文献   

13.
Measurements of gas–particle-partitioning coefficients for reactive mercury in dry urban and laboratory aerosol were found to strongly depend on ambient temperature. Samples of atmospheric and laboratory aerosols (defined as both the gas and particle phases) were collected using filter and absorbent methods and analyzed for reactive mercury using thermal desorption combined with cold vapor atomic fluorescence spectroscopy. Synthetic ambient aerosols were generated in the laboratory from ammonium sulfate and adipic acid mixed with mercuric chloride in a purpose-built aerosol reactor. The aerosol reactor was operated in a temperature-controlled laboratory. Linear relationships between the logarithm of inverse gas–particle partitioning and inverse temperature were observed and parameterized for use in the atmospheric modeling of reactive mercury. Reactive mercury was observed to partition from the particle to the gas phase as ambient temperature increased. Good agreement between measurements made using urban and laboratory aerosols was seen after gas–particle-partitioning coefficients were normalized for surface area instead of mass. Thermodynamic analyses of the urban and laboratory gas–particle-partitioning measurements revealed that the strength of interaction between reactive mercury and particle surfaces was suggestive of chemisorption. Gas–particle-partitioning coefficients made with the Tekran ambient mercury analyzer (AMA) also showed a dependence on temperature. However, the Tekran AMA partitioning coefficients did not agree well with partitioning coefficients measured using the filter-based methods. The disagreement is consistent with the 50 °C operational temperature of the Tekran AMA.  相似文献   

14.
The link between the African Monsoon systems and aerosol loading in Africa is studied using multi-year satellite observations of UV-absorbing aerosols and rain gauge measurements.The main aerosol types occurring over Africa are desert dust and biomass burning aerosols, which are UV-absorbing. The abundance of these aerosols over Africa is characterised in this paper using residues and Absorbing Aerosol Index (AAI) data from Global Ozone Monitoring Experiment (GOME) on board ERS-2 and SCanning Imaging Absorption SpectroMeter for Atmospheric ChartograpHY (SCIAMACHY) on board Envisat.Time series of regionally averaged residues from 1995 to 2008 show the seasonal variations of aerosols in Africa. Zonally averaged daily residues over Africa are related to monthly mean precipitation data and show monsoon-controlled atmospheric aerosol loadings. A distinction is made between the West African Monsoon (WAM) and the East African Monsoon (EAM), which have different dynamics, mainly due to the asymmetric distribution of land masses around the equator in the west. The seasonal variation of the aerosol distribution is clearly linked to the seasonal cycle of the monsoonal wet and dry periods in both studied areas.The residue distribution over Africa shows two distinct modes, one associated with dry periods and one with wet periods. During dry periods the residue varies freely, due to aerosol emissions from deserts and biomass burning events. During wet periods the residue depends linearly on the amount of precipitation, due to scavenging of aerosols and the prevention of aerosol emissions from the wet surface. This is most clear over east Africa, where the sources and sinks of atmospheric aerosols are controlled directly by the local climate, i.e. monsoonal precipitation. Here, the wet mode has a mean residue of ?1.4 and the dry mode has a mean residue of ?0.3. During the wet modes a reduction of one residue unit for every 160 mm monthly averaged precipitation was found. Shielding effects due to cloud cover may also play a role in the reduction of the residue during wet periods.A possible influence of aerosols on the monsoon, via aerosol direct and indirect effects, is plausible, but cannot directly be deduced from these data.  相似文献   

15.
We investigate the correlation between stress-related compounds produced by corals of the Great Barrier Reef (GBR) and local atmospheric properties—an issue that goes to the core of the coral ecosystem’s ability to survive climate change. We relate the variability in a satellite decadal time series of fine-mode aerosol optical depth (AOD) to a coral stress metric, formulated as a function of irradiance, water clarity, and tide, at Heron Island in the southern GBR. We found that AOD was correlated with the coral stress metric, and the correlation increased at low wind speeds, when horizontal advection of air masses was low and the production of non-biogenic aerosols was minimal. We posit that coral reefs may be able to protect themselves from irradiance stress during calm weather by affecting the optical properties of the atmosphere and local incident solar radiation.  相似文献   

16.
The high-molecular weight water-soluble organic compounds present in atmospheric aerosols underwent functional-group characterization using liquid chromatography tandem mass spectrometry (LC-MS/MS), with a focus on understanding the chemical structure and origins of humic-like substances (HULIS) in the atmosphere. Aerosol samples were obtained from several locations in North America at times when primary sources contributing to organic aerosol were well-characterized: Riverside, CA, Fresno, CA, urban and peripheral Mexico City, Atlanta, GA, and Bondville, IL. Chemical analysis targeted identification and quantification of functional groups, such as aliphatic, aromatic, and bulk carboxylic acids, organosulfates, and carbohydrate-like substances that comprise species with molecular weights (MW) 200–600 amu. Measured high-MW functional groups were compared to modeled primary sources with the purpose of identifying associations between aerosol sources, high-MW aerosol species, and HULIS. Mobile source emissions were linked to high-molecular weight carboxylic acids, especially aromatic acids, biomass burning was associated with carboxylic acids and carbohydrate-like substances, and secondary organic aerosol (SOA) correlated well with the total amount of HULIS measured, whereas organosulfates showed no correlation with aerosol sources and exhibited unique spatial trends. These results suggested the importance of motor vehicles, biomass burning, and SOA as important sources of precursors to HULIS. Structural characteristics of atmospheric HULIS were compared to terrestrial humic and fulvic acids and revealed striking similarities in chemical structure, with the exception of organosulfates which were unique to atmospheric HULIS.  相似文献   

17.
An experimental investigation was undertaken to isolate and quantitatively determine the effect relative humidity has on the light-scattering ability of aerosols. Both the naturally-occurring ambient aerosol of State College, Pa., and several common test aerosols were used. A measured flow of aerosol was mixed with a measured flow of particle-free air to form a mixture of constant contaminant level; the humidity of this mixture was varied by controlling the moisture content of the clean diluent air. The total light scattered by a given aerosol sample, at various relative humidities, was measured with a Sinclair-Phoenix aerosol photometer (measures the total light scattered in the near forward direction). All measurements were carried out at atmospheric pressure, and after the particulates had an average of 1½ minutes to reach equilibrium with the water vapor. Natural and laboratory-generated aerosols were both tested in this manner.  相似文献   

18.
各类超高效气溶胶净化系统普遍存在的较为突出的问题是:缺乏系统工作有效性现场检测手段,难以判断系统防护是否失效。根据超高效滤料过滤特性和测试原理,并在分析了大气气溶胶对过滤效率测试影响的基础上,提出大气气溶胶背景下,基于粒数浓度测量和使用发生的高浓度单分散气溶胶作为实验气溶胶的净化系统防护有效性现场检验测试技术及系统组成,并进行了验证。  相似文献   

19.
Eight trace elements, Si, Cl, K, Ca, Ti, Mn, Fe and Zn in the near-ground atmospheric aerosols were evaluated in the northwestern part of Mount Kenya using a dichotomous sampler and an EDXRF spectrometer. The samples were taken at 2 sites situated in Nanyuki area, which is roughly on the Equator. The sampler segregated the aerosol into two aerodynamic diameter (ad) size fractions, fine (<3.5 μm ad) and coarse (>3.5 and <18 μm ad). The elemental concentrations in the two size fractions were quantified and the elements assigned to known sources. Local wind blown dust related to agricultural activities and fire burning was found to dominate the lower tropospheric aerosols. There was inconclusive evidence of long range-transported aerosols being moved by night transport from the middle to the lower parts of the troposphere. Influence of the Indian Ocean marine aerosol was suggested but conclusive evidence was lacking.  相似文献   

20.
The water-soluble fraction of an aerosol determines its chemical and physical properties and also its behaviour. The origin of the aerosol and its atmospheric transport influence its solubility. Cloud process simulations have been conducted on both Saharan and anthropogenic aerosols. The rate of solubilisation was followed for native and processed aerosol particles; it is controlled by the pH variations due to release of acids or bases. It appears that one condensation/evaporation cycle increases the solubility of aerosol particles. Increasing the number of cloud process simulations does not affect the solubility profile. The solubility depends only on the conditions of the last cloud cycle and, in particular, on the factor controlling pH during this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号