首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
河北农居环境颗粒态汞污染特征及健康评估研究   总被引:2,自引:1,他引:1  
赵亚娟  龚巍巍  栾胜基 《环境科学》2012,33(9):2960-2966
近年来,我国农村环境问题日渐加重,大气颗粒态汞对人体健康的危害逐渐凸现出来,而已有研究对我国农居环境中的汞污染状况关注较少. 以颗粒态汞为研究对象,于2009年7、8月及2010年10~12月,对河北省6个村庄中的34个典型农居环境进行PM10和PM2.5膜采样,采用冷原子荧光法测定颗粒态汞质量浓度. 结果表明,同一季节时,厨房PM10中汞质量浓度约是庭院PM10中汞质量浓度的2倍; 在同一空间内,PM10中汞质量浓度大小依次是冬季(3.004 ng·m-3)>秋季(1.550 ng·m-3)>夏季(1.127 ng·m-3); 同一季节时,PM2.5中汞质量浓度大小依次是厨房(0.795 ng·m-3±0.337 ng·m-3)>客厅(0.398 ng·m-3±0.159 ng·m-3)>庭院(0.321 ng·m-3±0.143 ng·m-3); PM2.5中的汞质量浓度占PM10中汞质量浓度的百分比为(52.4±13.5)%. 对农居环境PM2.5中汞的健康风险度水平进行评价,不同人群中儿童的暴露水平最高,其年均超额危险度<10-8. 可知农居环境PM2.5中汞对农户的健康风险在可以忽略的水平.  相似文献   

2.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

3.
利用2014-2016年南京江北地区PM2.5质量浓度和气象要素的小时数据,并结合HYSPLIT模式后向轨迹聚类分析和PSCF法分析了PM2.5质量浓度的污染特征及其主要影响因素和主要来源特征.结果表明:2014-2016年PM2.5质量浓度呈逐年下降趋势,下降幅度约为17.40%,由2014年的62.1 μg·m-3下降至2016年的51.2 μg·m-3,能见度由2014年的5.8 km上升至2016年6.6 km.PM2.5质量浓度存在显著的月变化和季节变化特征,1月浓度最高,可达93.0 μg·m-3;8月浓度最低,仅为38.8 μg·m-3;冬季浓度最高,可达76.8 μg·m-3,夏季浓度最低,仅为47.1 μg·m-3.不同季节日变化均为单峰型分布.气象要素对PM2.5质量浓度的影响较大,不同相对湿度下能见度和PM2.5质量浓度具有较好的拟合关系.霾和非霾天PM2.5质量浓度的阈值为15 μg·m-3.不同季节的主导气团不同,春季主导气团为偏北气流和偏东气流,占比分别为43.50%和30.80%;夏季主导气团以东部气流为主,占比约为68.22%;秋季和冬季主导气团为来自北方的气流,总占比分别为83.52%和100%;偏北内陆气团PM2.5质量浓度较大,偏东海洋性气团PM2.5质量浓度较低.PM2.5质量浓度潜在源区春冬季潜在源区范围较大,夏秋季潜在源区范围较小,季节变化显著.春季潜在来源主要分布在安徽、江西北部、江苏南部和浙江北部等地区,夏秋季分布在安徽东部、浙江北部和江苏南部等地区,冬季分布在安徽、河南东部,山东和江苏等地区.  相似文献   

4.
成都城区PM2.5季节污染特征及来源解析   总被引:16,自引:0,他引:16  
于2009—2010年各季节典型月在成都城区采集了大气PM2.5样品,对PM2.5的质量浓度及其主要化学成分(含碳组分、水溶性无机离子和元素)进行了测定. 结果显示:成都城区PM2.5平均质量浓度高达(165.1±85.1)μg·m-3,是国家环境空气质量标准年均PM2.5限值的4.7倍. OC、EC和水溶性二次离子(SO42-,NO3-和NH4+)的平均浓度分别为(22.6±10.2)μg·m-3,(9.0±5.4)μg·m-3和(62.8±44.3)μg·m-3,分别占PM2.5浓度的13.7%、5.5%和38.0%. PM2.5及其主要化学成分浓度季节特征明显,即秋冬季高于春夏季. 利用正交矩阵因子分析(PMF)对成都城区PM2.5的来源进行解析,结果表明,土壤尘及扬尘、生物质燃烧、机动车源和二次硝酸盐/硫酸盐的贡献率分别为14.3%、28.0%、24.0%和31.3%. 就季节变化而言,生物质燃烧源贡献率在四个季节均维持在较高水平;土壤尘及扬尘的贡献率在春季显著提高;机动车源的贡献率在夏季中表现突出;而二次硝酸盐/硫酸盐的贡献率在秋冬季中则最为显著.  相似文献   

5.
成都市大气细颗粒物组成和污染特征分析(2012-2013年)   总被引:18,自引:4,他引:14  
陈源  谢绍东  罗彬 《环境科学学报》2016,36(3):1021-1031
为了解成都市大气细颗粒物的污染特征,于2012年5月-2013年5月在成都市城区开展了每6 d采集1次样品的长期颗粒物观测.利用十万分之一分析天平、热光碳分析仪、离子色谱、电感耦合等离子体质谱(ICP-MS)分别分析了颗粒物样品的质量浓度、有机碳/元素碳、水溶性离子、无机元素等,同步收集了污染物在线观测数据、气象数据和卫星遥感数据.结果表明,采样期间,成都市可吸入颗粒物(PM10)和细粒子(PM2.5)浓度颗粒物浓度分别高达(129.7±76.4)和(91.6±54.3) μg·m-3,PM2.5中以二次无机离子(SNA,43.6%)和有机物(OM,31.2%)污染最为突出,其次为土壤组分(Soil,13.8%)、元素碳(EC,5.0%)和微量元素(Trace,0.8%);1月、3月、5月和10月是污染较重的月份.通过比较揭示了不同污染源影响下的典型污染特征.生物质燃烧期间,成都城区PM2.5浓度达214.3 μg·m-3,PM2.5/PM10比达0.89,其中OM贡献增加至57.2%,K+浓度达8.7 μg·m-3,OC/EC比达8.3,SNA比重下降;而沙尘传输期间,PM2.5浓度为122.6 μg·m-3,仅占PM10浓度的0.28,PM2.5中土壤组分比例剧增至77.3%,SNA和无机元素的比重明显下降;静稳天气下PM2.5浓度为261.0 μg·m-3,各组分比重并无明显变化,硝酸盐和铵盐比例稍有增加.  相似文献   

6.
随着城市化和工业化水平的逐渐提高,河南省的空气污染问题也日益严重.利用嵌套网格空气质量模式(NAQPMS),数值模拟了2013年7月-2014年6月年河南省大气细颗粒物及其前体物(NO2、SO2、PM10、PM2.5)的地面浓度,并量化了其主要来源.结果表明:模式能够较好地再现污染物的时空演化特征.整体来讲,河南省PM2.5的高值区集中在中部和北部地区,呈现冬季高、夏季低的特点.在线源解析模拟发现,河南省不同地区PM2.5的来源有所不同,中西部地区主要来自于本地,而在东部和北部地市,来自周边省份的区域输送更为显著,其贡献达到40%~50%,且在PM2.5浓度的高值区更为明显.就行业贡献而言,居民源、工业源和机动车排放是河南省PM2.5浓度的主要来源,其浓度贡献分别为23.7 μg·m-3(贡献比例24%,下同)、20.6 μg·m-3(21%)和21.3 μg·m-3(22%),电厂、农牧业和地面扬尘的浓度贡献分别为7.0 μg·m-3(7%)、8.7 μg·m-3(9%)和17.8 μg·m-3(18%).受居民源影响最大的地区是河南中东部和北部地市,其贡献达到PM2.5浓度的27%、27%和25%.工业源影响最大的地区集中在太行山南部地市,其浓度贡献为26.4 μg·m-3(24%),在其他地市的贡献为17%~23%.机动车对河南东部影响最为显著,其浓度贡献为22.9 μg·m-3(24%).电厂和农畜牧业对全省PM2.5的贡献分布比较均匀,分别为6%~9%和8%~10%.分析不同浓度下的PM2.5来源,发现工业源和扬尘贡献随PM2.5浓度增加逐渐降低,而居民源和机动车排放的贡献则有所增加,在PM2.5浓度高于100 μg·m-3期间,达到22%和20%.  相似文献   

7.
对大气污染物进行时空分布特征研究是开展大气污染防治的关键技术支撑.本研究基于广州市52个城市环境空气质量监测站点数据,采用系统聚类法、经验正交函数 (EOF)等方法分析了2016—2020年广州市PM2.5浓度的时空分布特征.结果表明:①2016—2020年广州市PM2.5污染改善显著,PM2.5年均浓度从35.9 μg·m-3下降至23.0 μg·m-3,达标比例由96.2%上升至100%;PM2.5干季平均浓度为湿季的1.54倍, 国控点超标天数为湿季的10.5倍;PM2.5浓度日变化曲线峰谷值浓度差由7.5 μg·m-3下降至3.9 μg·m-3,日变化幅度趋于平缓.②广州市PM2.5浓度最高值区主要分布在东西两侧,高值区域范围逐年减小,全市PM2.5浓度分布趋于均匀;采用系统聚类法可将广州市PM2.5分成北部、中北部、 南部、中南部4个污染区,其中,北部区PM2.5浓度下降率仅为其他污染区的1/2,推测其PM2.5浓度下降可能更多地由区域背景浓度的下降贡献;EOF分解前3模态累积方差贡献率达93%,分别可表征PM2.5总体污染程度、在南北方向上的区域输送特征及由外围区域向中心城区聚集的 污染特征.  相似文献   

8.
为探索浙江省中部地区大气细颗粒物(PM2.5)中水溶性离子的组成特征及其季节变化,采集了兰溪市市区和近郊两个站点2016年4个季节的PM2.5样品,利用双通道离子色谱对水溶性无机离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Ca2+、Mg2+)进行了定量分析.结果表明,兰溪PM2.5中离子总浓度存在明显的冬季高、夏季低的季节变化趋势,年均值为21.19 μg·m-3,约占PM2.5质量的45%;SO42-、NO3-和NH4+是水溶性离子中最主要的组分,年均浓度分别为8.11、5.92、3.87 μg·m-3.Cl-和NO3-浓度的季节变化最为显著,冬/夏浓度比接近10,其半挥发特性是导致兰溪PM2.5中离子组成呈现季节变化的重要原因.兰溪PM2.5中NO3-/SO42-比值的冬季平均值为1.18,说明流动源对兰溪PM2.5有很大贡献;夏季(以及春、秋季)时NO3-/SO42-比值较低,且与PM2.5浓度呈负相关,与矿物尘结合的硝酸根离子的较大贡献可能是导致夏季PM2.5浓度较低时NO3-/SO42-比值较高的主要原因.阴阳离子平衡、相关性及主成分分析(PCA)结果表明,矿物尘对兰溪市PM2.5的酸度及离子赋存状态有较大影响;冬季及春、秋季兰溪的PM2.5具有一定的酸性;NO3-和SO42-主要与NH4+结合,但部分可能与钙等其他组分结合;Cl-和K+主要来源于生物质燃烧,但K+的年均浓度仅为0.31 μg·m-3,说明生物质燃烧对兰溪PM2.5的贡献不大.  相似文献   

9.
贺博文  聂赛赛  王帅  冯亚平  姚波  崔建升 《环境科学》2021,42(11):5152-5161
为研究承德市PM2.5中碳质组分的季节变化及污染来源,于2019年1、4、7和10月采集大气PM2.5样品,测定碳质组分浓度.通过有机碳(OC)与元素碳(EC)比值、总碳质气溶胶(TCA)及二次有机碳(SOC)的估算,分析碳质组分的变化特征;结合后向轨迹和主成分分析(PCA)方法,分析污染来源.结果表明,采样期间PM2.5、OC和EC的平均质量浓度分别为(31.26±21.39)、(13.27±8.68)和(2.80±1.95)μg ·m-3.PM2.5的季节变化趋势为:冬季[(47.68±30.37)μg ·m-3]>秋季[(28.72±17.12)μg ·m-3]>春季[(26.59±15.32)μg ·m-3]>夏季[(23.17±8.38)μg ·m-3],与总碳(TC)、OC和EC季节变化趋势一致,冬季(R2=0.85)的OC与EC来源较一致;OC/EC值得出4个季节均受到交通和燃煤源排放的影响,且冬季受烟煤排放影响显著.TCA的平均浓度为(21.38±13.68)μg ·m-3,占PM2.5比例达68.39%,二次转化率(SOC/OC)为:春季(54.09%)>秋季(37.64%)>夏季(32.91%)>冬季(25.43%).后向轨迹模拟结果表明,春季和夏季气团携带的污染物浓度相对较低,秋季污染物的传输通道为西南方向,冬季为西北方向,主成分分析(PCA)表明,承德市PM2.5削减的关键是控制机动车尾气、燃煤和生物质燃烧源的排放.  相似文献   

10.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

11.
应用高分辨率场发射扫描电镜(FESEM)和图像分析技术研究了北京西北城区和清洁对照点非取暖期(2001年夏季)大气单个颗粒物的形貌特征以及PM10和PM2.5的数量-粒度和体积-粒度分布.研究表明,烟尘集合体在2个采样点都普遍存在,具有区域性污染的特征;不规则状矿物颗粒物多见于市区PM10样品中,而长条状石膏颗粒多出现在清洁对照点颗粒物样品中;在清洁对照点还观察到了生物质颗粒.PM10的数量-粒度分布呈双峰分布,主峰为0.2~0.5μm,次峰为在1~2.5μm但PM10的体积-粒度分布呈单峰分布,在1~2.5μm粒度范围内.综合分析得出,虽然粗颗粒,主要是矿物颗粒,在数量上对PM10贡献很小,但是对总体积,因此对总质量的贡献可能很大但在PM2.5中,烟尘集合体在数量和体积上均占优势.  相似文献   

12.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

13.
利用2,4-二硝基苯肼(DNPH)作为衍生化试剂,高效液相色谱/紫外检测法(HPLC/UV)定量检测上海市大气PM2.5中单羰基和二羰基化合物,共检测出5种单羰基化合物和2种二羰基化合物(乙二醛和甲基乙二醛).单羰基化合物中浓度最高的是甲醛和乙醛,其年平均浓度分别为(1579.47±672.81)ng/m3和(572.02±470.58)ng/m3;二羰基化合物乙二醛和甲基乙二醛的年平均浓度分别为(63.74±54.27)ng/m3和(97.28±39.62)ng/m3.研究发现上海市大气PM2.5中一些羰基化合物具有明显的日变化和季节变化规律:日变化表现为早晚高峰,而季节性变化单羰基化合物是冬天>夏天,二羰基化合物则是夏季>冬季.此外,PM2.5中羰基化合物的浓度还与温度、湿度、质量浓度具有一定的关系.  相似文献   

14.
基于PMF模型的北京市PM2.5来源的时空分布特征   总被引:6,自引:0,他引:6  
2012年8月至2013年7月,对北京市定陵、车公庄、东四、石景山、通州、房山、亦庄和榆垡等8个站点的大气细颗粒物PM2.5进行了12个月次的同步采样观测,并测定了其中元素碳、有机碳、水溶性离子和无机元素的浓度水平.利用PMF模型对PM2.5的来源进行解析.结果表明,北京市PM2.5的主要来源为二次源、燃煤、地面扬尘、机动车排放、工业源和建筑尘等,年均贡献率分别为42%、19%、19%、10%、6%和4%.PM2.5的来源具有显著的季节变化,春季大风天气频繁、地面扬尘源为主要来源,而夏、秋、冬季均以二次源为主,尤其是夏季二次源贡献达56%,冬季燃煤源对PM2.5的贡献显著提升为25%.污染源贡献也存在一定空间差异,冬春季燃煤源对郊区点的贡献显著高于城区点,而二次污染源具有区域性污染特征.在区域性积累型重污染日,二次源对PM2.5的贡献均占主要地位,对气态前体物NOx、SO2和VOCs等的控制对PM2.5的减少至关重要.  相似文献   

15.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

16.
Quantitative information on mass concentrations and other characteristics, such as spatial distribution, seasonal variation, indoor/outdoor (I/O) ratio, correlations and sources, of indoor and outdoor PM2.5 and elemental components in Guangzhou City were provided. Mass concentration of PM2.5 and elemental components were determined by standard weight method and proton-induced X-ray emission (PIXE) method. 18 elements were detected, the results showed positive results. Average indoor and outdoor PM2.5 concentrations in nine sites were in the range of 67.7-74.5μg/m^3 for summer period, and 109.9-123.7 μg/m^3 for winter period, respectively. The sum of 18 elements average concentrations were 5362.6-5533.4 ng/m^3 for summer period, and 8416.8-8900.6 ng/m^3 for winter period, respectively. Average concentrations of PM2.5 and element components showed obvious spatial characteristic, that the concentrations in roadside area and in industrial plant area were higher than those in generic urban area. An obvious seasonal variation characteristic was found for PM2.5 and elemental components, that the concentrations in winter were higher than that in summer. The I/O ratio of PM2.5 and some elemental components presented larger than 1 sometimes. According to indoor/outdoor correlation of PM2.5 and element concentrations, it was found that there were often good relationships between indoor and outdoor concentrations. Enrichment factors were calculated to evaluate anthropogenic versus natural elements sources.  相似文献   

17.
为了解我国中小城市地区SOA(二次有机气溶胶)的质量浓度及来源,采集了浙江省中西部典型地区——兰溪市城区和近郊2个站点2016年四季的PM2.5样品,利用GC/MS(气相色谱/质谱)分析了PM2.5中11种指示不同来源的SOA示踪物的质量浓度水平,利用示踪物产率法估算了不同来源前体物对SOC(二次有机碳)的贡献.结果表明:兰溪市PM2.5中ρ(异戊二烯SOA示踪物)的年均值为40.79 ng/m3,约占检测示踪物总质量浓度的89%;ρ(α-蒎烯SOA示踪物)、ρ(β-石竹烯SOA示踪物)和ρ(甲苯SOA示踪物)的年均值分别为4.09、0.36和1.01 ng/m3.ρ(异戊二烯SOA示踪物)和ρ(α-蒎烯SOA示踪物)存在夏季 > 秋季 > 春季 > 冬季的季节性变化趋势,ρ(β-石竹烯SOA示踪物)为秋季、冬季 > 春季、夏季,而ρ(甲苯SOA示踪物)的季节性变化不显著,表明不同类型VOCs(挥发性有机物)前体物排放量的季节性变化明显不同.基于示踪物产率法的估算结果表明:夏季异戊二烯等植物源VOCs可能是兰溪市PM2.5中SOA的主要来源;而春季、秋季、冬季甲苯等人为源VOCs是SOA的主要前体物,贡献了兰溪市PM2.5中ρ(SOC)的60%左右.研究显示,减少人为源VOCs的排放对相关地区灰霾及大气细颗粒物污染的防控具有重要作用.   相似文献   

18.
天津近岸海域大气颗粒物无机组分季节变化及源析   总被引:4,自引:1,他引:3       下载免费PDF全文
2006~2007年在天津近岸海域分4个季节走航采集了不同粒径大气颗粒物样品,分析了其质量浓度以及元素、离子和碳等化学组成,并应用富集因子以及特征化合物比值对其来源进行了探讨.结果表明,天津近岸海域TSP,PM10和PM2.5的质量浓度分别为(294.98±3.95),(279.87±17.53),(205.50±38.13)μg/m3,且呈现出明显的季节变化,秋季颗粒物浓度最高,冬季次之,夏季最低. TSP、PM10和PM2.5中总元素浓度分别为48.76, 47.94,32.08 μg/m3. TSP中含量最高的离子是Na+, PM10和PM2.5中含量最高的离子是Cl-. 3种不同粒径中OC浓度秋、冬两季均明显高于春夏两季. Al/Fe的比值分析结果表明,春季TSP的主要来源为土壤尘,秋、冬季PM10和PM2.5主要受燃煤的影响. Cu、Zn和Pb的富集系数较高,其中Pb在冬季PM10中富集达到最高为741.3. NO3-/SO42-的变化范围为0.28~0.85,春夏季该比值较高于秋冬季,反映了该海域同时受燃煤与机动车污染的影响.OC/EC变化范围为2.13~5.58,表明该海域气溶胶中存在着大量二次有机碳.  相似文献   

19.
青岛市大气PM2.5元素组成及来源研究   总被引:3,自引:3,他引:0  
李秀镇  盛立芳  徐华  屈文军 《环境科学》2012,33(5):1438-1445
利用2007年5月~2008年5月气溶胶观测资料和逐日天气资料,分析了青岛市2.5μm气溶胶粒子(PM2.5)浓度特征、元素组成和来源.结果表明,青岛市PM2.5和PM10年均浓度分别为86.6μg.m-3和120μg.m-3.PM2.5浓度采暖季高于非采暖季,夏季最低.PM2.5浓度在荒漠和人为共同影响下的气团中最高,在海洋影响气团中最低.PM2.5和PM10的主要组成元素是S、Ca、Cl、K和Fe,主要污染元素集中在PM2.5中;PM2.5中Cl、K、Zn、Br和Pb浓度采暖季较大,夏季较小,Ca元素变化趋势则相反.V、Cr、Cu、As、Se、Sr和Zr的浓度受不同来源气团影响不显著,S、Cl、K、Ti、Mn、Fe、Zn、Br、Pb和Ca的浓度在不同来源气团下存在较大差异.降水对S、K、Pb和Fe质量浓度的影响最为明显.富集因子分析表明,所有元素在PM2.5中的富集因子普遍大于PM10,青岛市非地壳来源的元素在PM2.5中所占比例大于PM10.Ca元素富集因子夏季较大,可能受到建筑尘影响.  相似文献   

20.
北京城区可吸入颗粒物(PM10的矿物学研究   总被引:17,自引:3,他引:17       下载免费PDF全文
 使用X射线衍射技术(XRD)和扫描电镜技术(SEM/EDX)对北京PM10中的矿物组分进行了分析.结果表明,北京PM10中的矿物组分存在明显的季节变化规律,春季PM10中的矿物组成种类最多;秋季PM10中的矿物种类最少;在夏季PM10中,矿物的种类有所减少,却有新的物种出现,如NH4Cl、K(NH4)Ca(SO4)2?H2O、As2O3SO3等.粘土矿物是北京PM10中含量最高的矿物,石英的含量次之,其他依次为方解石、石膏、长石、白云石以及其他矿物颗粒;北京PM10中还存在一定数量的复合颗粒,颗粒表面常有S、Cl元素的存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号