首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous data of vertical-profile salinity were analyzed for four stations located successively upriver in a macrotidal estuary, the lower St. Johns River (Northeast Florida, USA). The data analysis confirmed well-mixed salinity conditions in the river with at most 1.3 ppt of vertical variability at Dames Point (river km 20), where the main variations of salinity are along the longitudinal axis of the river. Given the well-mixed salinity conditions and dominant horizontal structure of salinity variations in the river, we present and apply a barotropic, two-dimensional modeling approach for hydrodynamic-salinity transport simulation in the lower St. Johns River. When properly forced by offshore surge, high-resolution wind fields and freshwater river inflows, the model replicated the salinity measurements remarkably well, including the separation into tidal and sub-tidal components. The data and model results show that, at times, offshore winds and surge can be more influential on longitudinal salinity variations than local winds over the river. We demonstrate the importance of using proper boundary conditions to force the model relative to the minimal sensitivity of the model to parameter adjustment of horizontal mixing and uncertainty-based perturbation of wind and inflow forcings.  相似文献   

2.
Zhang Y  Huang G  Wang W  Chen L  Lin G 《Ecology》2012,93(3):588-597
Cordgrass (Spartina alterniflora) was introduced to China in 1979 from the United States for reducing coastal erosion. It grows vigorously in China and has spread over much of the Chinese coast, from Leizhou Peninsula to Liaoning, a range of more than 19 degrees of latitude. On the southern coast of China, S. alterniflora has invaded mangrove-dominated habitats during the last two decades, but little is known about interactions between native mangroves and invasive S. alterniflora. We studied the distribution and competitive interactions between native mangroves and S. alterniflora in the Zhangjiang Estuary at four tidal sites along a salinity gradient: oligohaline upstream, mesohaline, polyhaline, and euhaline downstream. S. alterniflora occurred at all four sites, and several mangrove species occurred at all but the downstream euhaline site. S. alterniflora has invaded the estuary widely and has spread to the lower tidal margins of mangroves. It has not invaded mangrove areas with a closed canopy but has established in the mangrove zone where the canopy was opened by human disturbance. Ramets of S. alterniflora transplanted into the understory of mangrove stands with closed canopies died within 10 weeks, but 37.5% survived and grew well on open mud flats. S. alterniflora had virtually no competitive effect on mangrove seedlings planted at the upstream oligohaline site. However, S. alterniflora competitively reduced biomass of mangrove seedlings to 33% over a period of 14 weeks at the mesohaline and polyhaline sites where human disturbance has opened the mangrove canopy. In contrast, S. alterniflora marginally facilitated growth and survival of experimental seedlings at the downstream euhaline site. In China, mangroves occur along the coastline south of Whenzhou, but they have been severely disturbed and removed widely, mainly by mariculture activities. Natural vegetation patterns and our experimental results suggest that, without intervention, S. alterniflora could gradually replace these mangroves in mid-salinity regions of Chinese estuaries.  相似文献   

3.
Low-elevation coastal areas and their populations are at risk during and after the appearance of a storm surge event. Coastal flooding as a result of storm surge events is investigated in this paper for a number of areas around the north-eastern (NE) Mediterranean coastal zone (Adriatic, Aegean and north Levantine seas). The sea level rise (SLR) due to storm surge events is examined for the period 2000?C2004. Wind data, atmospheric pressure and wave data for this period as well as in situ sea elevation measurements (from stations around the Mediterranean coasts) were used. Potential inundation zones were then identified using a 90-m horizontal resolution digital elevation model (DEM). At these zones, the sea surface elevations were calculated for the study period, using the collected data and a 2D storm surge simulation model (1/10o??1/10o) output, examining the sea level alteration in specific coastal areas, where in situ measurements are absent and are characterised as ??risky?? in inundation areas, due to their topography. In order to determine the level of storm track implication on major SLR incidents, the trajectories of the respective storm events were computed. The aim of this paper is to investigate the major storm surge events that appeared during the study period, identify the major ??risky?? costal regions along the north-eastern Mediterranean coast and determine their hazard level due to inundation caused by storm surge phenomena. The combination of the risk level determination of an area and the calculation of sea level alteration is an important tool in terms of predicting and protecting the coastal area from extreme meteorological incidents.  相似文献   

4.
In many arid zones around the word, the vegetation spontaneously forms regular patterns to optimize the use of the scarce water resources. The patterns act as early warning signal that fragile ecosystems may suddenly undergo irreversible shifts, thus, interpreting the structural shape of vegetation patterns is crucial to deciphering the ecosystem history and its expected further development. The sudden and irreversible shift of delicate ecosystems as a consequence of minor variation of the climatic forcing has been studied extensively in the past. The attitude of the ecosystem to recover after a catastrophic event, such as fire, did not receive as much attention so far. Here we modelled fire, as a sudden shift of the ecosystem state variables and functionality and evaluated post-fire scenarios under the hypothesis that two major feedbacks shaped the vegetation patterns: a positive feedback between preferential infiltration and plant growth, and a second feedback between infiltration and vegetation burning. A simple model solving a set of partial differential equations for soil moisture, plant biomass, surface water and dead biomass balance predicted significantly diverse post-fire vegetation patterns depending on the fire severity and on the degree of soil water repellency induced by the vegetation burning.  相似文献   

5.
We have developed and applied a process-based model, the Wetland Ecosystem Model (WEM), to evaluate the effects of a prescribed fire on the phosphorus (P) dynamics and cattail (Typha domingensis) growth in a P-enriched area in the Florida Everglades. The WEM couples major ecosystem processes including carbon (C), nitrogen (N) and P biogeochemical cycles, plant growth, hydrology, and fire disturbance. The model is used to assess the effects of a prescribed fire on P dynamics and cattail growth through dynamic interaction among four modules: fire, water chemistry, soil, and vegetation. The simulation results are in agreement with observed data including cattail above- and belowground biomass and dead mass, P concentration in surface-water, pore-water, and soil, and soil and water temperature. Cattail aboveground biomass reached the unburned level one year after burn; belowground biomass recovered to unburned level one and half years after the fire, however, dead mass did not completely reach unburned level two years after fires. The fire increased water and soil temperatures in the short term, while indirectly increasing the sensitivity of water and soil temperature post-fire response to air temperature by altering the energy exchange between air and water through a canopy gap created by fire. The fire also altered the P dynamics in surface-water and pore-water. A post-fire P pulse that lasted for less than one month was observed in surface-water. A similar P pulse, but in a small magnitude and a longer duration, was also observed in the pore-water total phosphorus (TP), and then came back to normal level after approximately three months. No significant changes in soil TP was observed during the study period. Meanwhile, no significant changes in water nutrients were observed downstream of the study plot. This finding indicated that the P-enriched wetlands in Everglades act as a buffer in regulating the P concentration in surface-water. Our study showed that the distance of fire effects on a 300 m × 300 m plot was less than 300 m downstream. Sensitivity analysis identified that the air temperature and hydrological conditions are two important driving factors which may alter the cattail community dynamics in response to prescribed fires. Similar to the filed studies, this study provided evidences that fire played an important role in managing plant growth and P dynamics in the Florida Everglades.  相似文献   

6.
Various constituents of spring water (calcium, bicarbonate, nitrate, phosphate, total organic material) influence the response of photosynthetic rate of Bostrychia binderi Harvey to changes in salinity. The rate of photosynthesis increased with a decrease in salinity. The rate of photosynthesis in low salinities was greater in seawater diluted with spring water than in sewater diluted with distilled water. Elevation of photosynthetic rates in the lower salinities (0 and 5 ppt) was partially due to increased levels of bicarbonate and various nutrients present in natural spring water. The higher calcium levels in spring water resulted in higher photosynthetic rates in plants held for 3 to 7 d in the lower salinities (0 to 5 ppt). Increased levels of calcium in salinities of 5 ppt or higher increased the photosynthetic rate only during the first 7 d of exposure, since acclimation occurred equally in individuals held for 2 to 8 wk in sewater diluted with distilled or spring water. This study suggests that the diverse algal floras, characteristic of estuaries on the west coast of Florida are in part the result of natural spring water mixing with seawater, sustaining the algae over short periods of low salinities.  相似文献   

7.
The effect of Hurricane Eloise in September, 1975 on the benthic fauna inhabiting the swash zone on Panama City Beach, Florida, USA is described. Damage by the storm to the beach and property was considerable. The effect of the storm on the benthic invertebrates was not adverse, as the number of individuals occurring in the swash zone was about the same after the storm as before. The number of species increased after the storm, but later decreased to approximate numbers before the storm. The increase in the number of species was mainly due to the influx of species that norusually accompanies a hurricane was probably a factor enabling benthic organisms that normally live in high salinities to survive.  相似文献   

8.
Recognition of the spatial-temporal distribution characteristics of soil salinity has become an important basis for the formulation of strategies required in the utilisation and sustainable development of soil resources in arid and semi-arid area. In this paper, based on vegetation cover dataset during 1998–2015 in Ejina region combined with the collected soil salinity data, geostatistical methods were used to explore the temporal and spatial dynamic characteristics of soil salinity and its impact on vegetation in the study area. The results showed significant differences in soil salinisation characteristics with a large variability in the soil salinity among the different soil depths, with a variation coefficient ranging from about 0.97–1.47. Soils are represented by a continuous variation, both in space and time. Soil salinity showed an obvious spatial autocorrelation, with a plaque type distribution. The areas of the salinised soil found for the years 2003, 2011 and 2015 were approximately 18,565, 23,206 and 17,721?km2, respectively. From the relationships deduced between the normalised difference vegetation index (NDVI) and soil moisture and salt content in different soil depths, the present study ascertains that the soil moisture content is the most important limiting factor of vegetation growth in Ejina Oasis.  相似文献   

9.
The factors controlling spatial and temporal patterns in soil solution and streamwater chemistry are highly uncertain in northern hardwood forest ecosystems in the northeastern United States, where concentrations of reactive nitrogen (Nr) in streams have surprisingly declined over recent decades in the face of persistent high rates of atmospheric Nr deposition and aging forests. Reactive nitrogen includes inorganic species (e.g., ammonium [NH4+], nitrate [NO3-]) and some organic forms (e.g., amino acids) available to support the growth of plants and microbes. The objective of this study was to examine controls on the spatial and temporal patterns in the concentrations and fluxes of nitrogen (N) species and dissolved organic carbon (DOC) in a 12-year record of soil solutions and streamwater along an elevational gradient (540-800 m) of a forested watershed at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of New Hampshire, USA. Dissolved organic N and DOC concentrations were elevated in the high-elevation spruce-fir-white birch (SFB) zone of the watershed, while NO3- was the dominant N species in the lower elevation hardwood portion of the watershed. Within the soil profile, N retention was centered in the mineral horizon, and significant amounts of N were retained between the lower mineral soil and the stream, supporting the idea that near- and in-stream processes are significant sinks for N at the HBEF. Temporal analysis suggested that hydrologic flow paths can override both abiotic and biotic retention mechanisms (i.e., during the non-growing season when most hydrologic export occurs, or during years with high rainfall), there appears to be direct flushing of N from the organic horizons into the stream via horizontal flow. Significant correlations between soil NO3- concentrations, nitrification rates and streamwater NO3- exports show the importance of biological production as a regulator of inorganic N export. The lack of internal production response (e.g., mineralization, nitrification) to a severe ice storm in 1998 reinforces the idea that plant uptake is the dominant regulator of export response to disturbance.  相似文献   

10.
We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.  相似文献   

11.
An unstructured grid, two-dimensional hydrodynamic model was established and applied to the coast of Taiwan to investigate the tide-surge interaction. Tidal elevations at the open boundaries coupled with a global ocean tidal model and the meteorological conditions using a cyclone model are used to drive the model. The model was calibrated and verified with the observed tidal levels at six tidal stations for seven typhoon events to ascertain the capability and feasibility of the model. The results show reasonable agreement between the simulated and observed tidal levels. The validated model was then applied to probe the influence of tide-surge interaction on phase, water levels, and storm surge height. We found that the tide-surge interaction influenced both the magnitude and timing of the surge, which depended on the typhoon path. The storm surge heights at different tidal stations were significantly influenced by wind stresses and directions. The water level rise due to the storm surge during high tide was greater at neap tide than at spring tide. Changing tidal ranges altered the prediction of the surge enough to induce the changes in peak water levels.  相似文献   

12.
This work has experimentally proved that hyper salinity, a major cause for degradation of coastal mangrove habitats, can be alleviated by flushing of hyper saline soil with tidal water and/or with rainwater. Over a period of three years after digging the creeks to flush hyper saline soil with tidal water, an appreciable reduction in soil salinity and a moderate increase in colonization of mangroves are observed. Soil analysis showed a significant reduction in salinity after 2 months of storage of rainwater with a significant and concomitant increase of heterotrophic bacterial counts and nutrients. This study raises the possibility of converting degrading mangrove habitats to luxuriant ones through man-made efforts.  相似文献   

13.
Positive plant–animal interactions are important in community ecology, but relatively little attention has been paid to their effect on the production of mangroves, dominant halophytic trees in tropical coastal marshes. Here, the role of fiddler crab (Uca spp.) burrowing on the growth and production of the white mangrove, Laguncularia racemosa (<2 years old), was examined in a restored marsh in Tampa Bay, Florida (27°41.65 N, 82°30.34 W) with manipulative experiments from June 2006 to May 2007. Fiddler crab burrowing significantly increased mangrove height by 27%, trunk diameter by 25%, and leaf production by 15%, compared to mangroves in crab exclusion enclosures. Additionally, the exclusion of fiddler crabs significantly increased interstitial water salinity from 32.4 to 44.2, and decreased the oxidation–reduction potential of the low organic sediments, but did not affect soil pH or sulfide concentration. Mangrove height, trunk diameter, and leaf production along a transect that varied in crab burrow density were positively associated with the number of crab burrows. Further, the density of sympatric Spartina alterniflora shoots was positively correlated with crab burrow density along the transect. As in temperate marshes, fiddler crabs can have significant ecological effects on mangrove communities, serving as ecological engineers by modulating the amount of resources available to marsh plants, and by altering the physical, chemical, and biological state of these soft sediment communities. In restored coastal systems that typically have very poor sediment quality, techniques such as soil amendment could be used to facilitate a more natural interaction between crabs and mangroves in ecosystem development.  相似文献   

14.
Annett Wolf 《Ecological modelling》2011,222(15):2595-2605
It is well known that vegetation dynamics at the catchment scale depends on the prevailing weather and soil moisture conditions. Soil moisture, however, is not equally distributed in space due to differences in topography, weather patterns, soil properties and the type and amount of vegetation cover. To elucidate the complex interaction between vegetation and soil moisture, the dynamic vegetation model LPJ-GUESS (Smith et al., 2001), which provides estimations of vegetation dynamics, but does not consider lateral water fluxes was coupled with the hydrological TOPMODEL (cf. Beven, 2001) in order to be able to evaluate the importance of these lateral fluxes. The new model LG-TM was calibrated and validated in two climatically different mountain catchments. The estimations of runoff were good, when monthly and weekly time scales were considered, although the low flow periods at winter time were somewhat underestimated. The uncertainty in the climate induced change vegetation carbon storage caused by the uncertainty in soil parameters was up to 3-5 kg C m−2 (depending on elevation and catchment), compared to the total change in vegetation carbon storage of 5-9 kg C m−2. Therefore accurate estimates of the parameters influencing the water holding capacity of the soil, for example depth and porosity, are necessary when estimating future changes in vegetation carbon storage. Similarly, changes in plant transpiration due to climatic changes could be almost double as high (88 mm m−2) in the not calibrated model compared to the new model version (ca 50 mm m−2 transpiration change). The uncertainties in these soil properties were found to be more important than the lateral water exchange between grid cells, even in steep topography at least for the temporal and spatial resolution used here.  相似文献   

15.
This study reports on a primary succession on a beach plain on the Dutch Wadden island of Schiermonnikoog. Vegetation succession started in 1959 when a sand dike was constructed to prevent structural erosion of the area by storm floods. Since then the sandy beach behind the dike has been protected from the direct influence of the North Sea. Heavy storms in 1972, however, created a large gap in the dike which has remained open since. Occasional storm floods during winter penetrate deeply into the area and salt water can cover parts of the beach plain for several months. This had a pronounced impact on the vegetation. Vegetation maps for six different years and data from a permanent plot have been used to reconstruct vegetation succession over a 42-yr period. Certain parts of the area seem to have changed little, while others have developed a grassland or scrub cover. The heavy storms and associated processes such as sand blowing, intensive flooding and increased salinity have created a disturbance/stress gradient of progressive and regressive succession across the beach plain. In certain places the vegetation cover has repeatedly been destroyed and succession re-initiated. It is concluded that the different stages of succession and associated diversity of plant species only can persist through the maintenance of the natural dynamics of the area.  相似文献   

16.
The lower reaches of the Heihe River, in northwestern China, is characterised by unique local edaphic conditions that have influenced the development of local desert riparian forests. This study examines the variations in spatial variation patterns to reveal the relationships between plant species diversity and soil moisture/salinity/texture gradients at different soil depths, providing insights into the management and restoration of vegetation in ecosystems in the study area. The species–environmental relationships are investigated by redundancy analysis based on the plant species diversity matrix and the edaphic gradient matrix. A survey of 61 sampling plots identified 37 plant species in the study area. The distribution pattern of the plant species diversity are mainly affected by soil moisture, soil salinity, and soil texture at different soil depths. These edaphic factors are able to explain 98.47% of the total variation in the analysed vegetation dataset. Soil moisture, salinity, and texture content vary in terms of both the soil depths and the vegetation types in the study area. The plant community Class IV, xeric shrub, has the lowest soil water content among different vegetation types. The surface soil salinity differs for different plants and follows the order: Sophora alopecurides?>?Tamarix chinensis?>?Populus euphratica.  相似文献   

17.
Current theories may not fully explain why latitudinal patterns of plant diversity differ between terrestrial and flooded ecosystems. Moreover, the co-occurrence of hyper diverse stands in lowland tierra firma (not inundated) forests and almost monospecific stands in mangroves and gallery riparian vegetation within the tropics remains enigmatic. Building on evidence from ecology and agriculture, we present a new model investigating the hypothesis that, besides the general positive feedback of plant growth by nutrients release, litter decomposition builds up an intra-specific negative feedback functionally linked with tree diversity. The model results were compared with extensive published data sets both across and within latitudinal zones. The model predicts correctly the biomass production and decomposition process, as well as the number of tree species, their relative abundance in all environmental conditions providing a novel, putative explanation also for the diversity variations observed within the tropics. The model demonstrates a possible mechanistic link between the carbon cycle and biodiversity patterns, which is interesting in the debate about advancing in the direction of a unifying ecosystem theory.  相似文献   

18.
随着滨海盐业的迅猛发展,盐田的急剧扩张已经对周边环境产生了影响。通过调查盐田周边植被分布特征,分析与植被带对应的典型样地土壤理化性质的空间异质性,研究了盐田对周边土壤及植被的影响。结果表明:盐田周边的植被分布存在明显的空间异质性,在盐田周边呈带状分布,且距盐田越近,植被盖度、物种丰富度越低。土壤含盐量的空间分布在宏观上表现为距盐田越近,含盐量越高,土壤盐渍化越重。距离盐田20m处土壤含盐量平均值达8.22g·kg-1,距离盐田1000m处,土壤含盐量平均值为1.84g·kg-1,土壤含盐量显著降低,且表层土壤含盐量与采样地距盐田间的距离之间呈显著相关关系。由此可见,盐田的扩建已经显著加重了周边土壤的盐渍化程度。  相似文献   

19.
Longleaf pine (Pinus palustris) savannas of the southeastern U.S. represent an archetype of a fire dependent ecosystem. They are known to have very short fire return intervals (∼1-3 years) that perpetuate understory plant diversity (up to 50 species m−2), support pine recruitment, and suppress fire sensitive hardwoods. Understanding the relationships that regulate longleaf and southern hardwoods is especially critical. With decreased fire frequency, insufficient intensity, or lack of underground competition, a woody mid-story rapidly develops, dominated by fire sensitive trees and shrubs that in-turn suppress more fire dependent species (including pine seedlings). This may occur in forest gaps, where pine-needle abundance is diminished, reducing fire spread potential. The interactions between longleaf pine, hardwoods, forest fuels, and fire frequency are complex and difficult to understand spatially. The objective of this study was to develop a spatially explicit longleaf pine-hardwood stochastic simulation model (LLM), incorporating tree demography, plant competition, and fuel and fire characteristics. Data from two longleaf pine study sites were used to develop and evaluate the model with the goal to incorporate simple site-specific calibration parameters for model versatility. Specific model components included pine seed masting, hardwood clonal sprouting, response to fire (re-sprouting, mortality), and tree density driven competition effects. LLM spatial outputs were consistent with observed forest gap dynamics associated with pine seedling establishment and hardwood encroachment. Changes in fire frequency (i.e., fire probability = 0.35-0.05) illustrated a shift in community structure from longleaf pine dominated to a hardwood dominated community. This approach to assessing model response may be useful in characterizing longleaf ecosystem resilience, especially at intermediate fire frequencies (e.g., 0.15) where the community may be sensitive to small changes in the fire regime. Height distributions and population densities were similar to in situ findings (field and LIDAR data) for both study sites. Height distributions output by the LLM illustrated fluctuations in population structure. The LLM was especially useful in determining knowledge gaps associated with fuel and fire heterogeneity, plant-plant interactions, population structure and its temporal fluctuations, and hardwood demography. This is the first known modeling work to simulate interactions between longleaf pine and hardwoods and provides a foundation for further studies on fire and forest management, especially in relation to ecological forestry practices, restoration, and site-specific applications.  相似文献   

20.
Conversions of natural woodlands to agriculture can alter the hydrologic balance, aquifer recharge, and salinity of soils and groundwater in ways that influence productivity and sustainable land use. Using a land-use change chronosequence in semiarid woodlands of Argentina's Espinal province, we examined the distribution of moisture and solutes and estimated recharge rates on adjacent plots of native woodlands and rain-fed agriculture converted 6-90 years previously. Soil coring and geoelectrical profiling confirmed the presence of spatially extensive salt accumulations in dry woodlands and pervasive salt losses in areas converted to agriculture. A 1.1-km-long electrical resistivity transect traversing woodland, 70-year-old agriculture, and woodland, for instance, revealed a low-resistivity (high-salinity) horizon between approximately 3 m and 13 m depth in the woodlands that was virtually absent in the agricultural site because of leaching. Nine-meter-deep soil profiles indicated a 53% increase in soil water storage after 30 or more years of cultivation. Conservative groundwater-recharge estimates based on chloride tracer methods in agricultural plots ranged from approximately 12 to 45 mm/yr, a substantial increase from the <1 mm/yr recharge in dry woodlands. The onset of deep soil moisture drainage and increased recharge led to >95% loss of sulfate and chloride ions from the shallow vadose zone in most agriculture plots. These losses correspond to over 100 Mg of sulfate and chloride salts potentially released to the region's groundwater aquifers through time with each hectare of deforestation, including a capacity to increase groundwater salinity to >4000 mg/L from these ions alone. Similarities between our findings and those of the dryland salinity problems of deforested woodlands in Australia suggest an important warning about the potential ecohydrological risks brought by the current wave of deforestation in the Espinal and other regions of South America and the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号