首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work the content of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) and other parameters (the pH, organic matter, carbonates and granulometric fraction) in agricultural topsoil in the Ebro basin are quantified, based on 624 samples collected according to an 8 by 8 km square mesh. The average concentrations (mg/kg) obtained were: Cd 0.415+/-0.163, Cr 20.27+/-13.21, Cu 17.33+/-14.97, Ni 20.50+/-22.71, Pb 17.54+/-10.41, Zn 17.53+/-24.19 and Hg 35.6+/-42.05 microg/kg. The concentration levels are relatively low in areas of high pH and low organic matter content concentration. The results of factor analysis group Cd, Cu, Hg, Pb and Zn in F1 and Cr y Ni in F2. The spatial heavy metals component maps based on geostatistical analysis, show definite association of these factors with the soil parent material. The local anomalies (found in Cu, Zn and Pb) are attributed to anthropogenic influence.  相似文献   

2.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

3.
Lin Q  Chen Y  Wang Z  Wang Y 《Chemosphere》2004,57(10):1439-1447
Hydrogen peroxide was widely selected as the chemical oxidant in chemical remediation or as the donor of oxygen in in situ aerobic bioremediation of organic pollutants. In this paper, hydrogen peroxide pretreatment and plant system was done to examine its possibility to remediate the heavy metal contaminated soil or heavy metal-organic combined contaminated soil. Heavy metal contaminated soil was collected from the heavily industrialized area, in Fuyang county, Zhejiang province, China. And heavy metal-organic combined contaminated soil was prepared from the same contaminated soil by spiking 100 microg g(-1) 2,4-dichlorophenol (2,4-DCP). Results showed that H2O2 could improve the dissipation of 2,4-DCP and enhance the availability of Cu and Zn in soil. The greatly increased DOC (dissolved organic carbon) in the oxidation process was probably the main reason for the greatly increased water soluble Cu in higher pH condition. Water soluble Zn, however, easily rebound to soil components with the time being and had no positive relation with dissolved organic carbon. Planting with ryegrass influenced the behavior of pollutants in soil. It was observed that the dissipation of 2,4-DCP could be enhanced by the presence of plant roots and the availability of Cu and Zn in the planted soil was changed due to the mobilization and rebound mechanisms in the rhizosphere. Co-contamination of 2,4-DCP caused the greater availability of Cu and Zn in H2O2 pretreatment. But with the ryegrass planting, it was easier to rebound to the less available phase in the rhizosphere. Both Cu and Zn concentration in shoots increased with the H2O2 treatment. Therefore our results suggested that H2O2 pretreatment was probably a promising way for promoting the dissipation of persistent organic pollutants and enhancing the solubility of Cu and Zn in soil. A combination of H2O2 pretreatment and suitable plant might be an efficient alternative for remedying heavy metal or heavy metal-organic contaminated soil.  相似文献   

4.
ABSTRACT

The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals—As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

5.
Anthropogenic activities could result in increasing concentrations of heavy metals in soil and deteriorating in soil environmental quality. Topsoil samples from a typical industrial area, Shiting River Valley, Sichuan, Southwest China, were collected and determined for the concentrations of Cu, Zn, Cr, Cd, As, and Hg. The mean concentrations of these metals were lower than the national threshold values, but were slightly higher than their corresponding background values, indicating enrichment of these metals in soils in the valley, especially for Cu, Zn, and Hg. The topsoils in this area demonstrated moderate pollution and low potential ecological risk. Principal component analysis coupled with cluster analysis was applied to analyze the data and identified possible sources of these heavy metals; the results showed that soil Cd, Hg, As, Cu, and Zn were predominantly controlled by human activities, whereas Cr was mainly from the parent material. The spatial distribution of the heavy metals varied distinctly and was closely correlated to local anthropogenic activities. Furthermore, the concentrations of heavy metals in the industrial land demonstrated relatively higher levels than those of other land use patterns. Soil metal concentrations decreased with the distance increase from the traffic highway (0–1.0 km) and water system (0–2.0 km). Additionally, soil properties, especially pH and soil organic matter, were found to be important factors in the distribution and composition of metals.  相似文献   

6.
中国商品有机肥重金属分析   总被引:7,自引:0,他引:7  
测定了来自10个地区不同生产原料的118个商品有机肥样品的重金属含量.结果表明:(1)商品有机肥样品中的Cd、Hg、Pb、Cr、As、Zn、Cu、Ni的平均值分别为0.600、0.120、7.34、84.30、9.45、202.91、91.06、11.01 mg/kg.(2)河南、湖北、上海的商品有机肥中8种重金属平均值均较高;内蒙古的商品有机肥中Cr平均值为20.32 mg/kg,广西的商品有机肥中Zn平均值为51.36mg/kg,远低于所有样品中Cr和Zn平均值.(3)以猪粪为主要生产原料的商品有机肥中重金属平均值最高.(4)Cr超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准、加拿大堆肥重金属限量标准(A级)和加拿大堆肥重金属限量标准(B级);As、Cd超过中国商品有机肥重金属限量标准、欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Cu、Zn超过欧盟生态标志法的重金属限量标准和加拿大堆肥重金属限量标准(A级);Hg超过加拿大堆肥重金属限量标准(A级);Pb超过中国商品有机肥重金属限量标准;Ni均未超标.  相似文献   

7.
Jing YD  He ZL  Yang XE 《Chemosphere》2007,69(10):1662-1669
The effects of pH, organic acids, and competitive cations on Hg(2+) desorption were studied. Three representative soils for rice production in China, locally referred to as a yellowish red soil (YRS), purplish clayey soil (PCS), and silty loam soil (SLS) and classified as Gleyi-Stagnic Anthrosols in FAO/UNESCO nomenclature, were, respectively, collected from Jiaxin County, Deqing County, and Xiasha District of Hangzhou City, Zhejiang Province. Most of the added Hg(2+) was adsorbed at low initial concentrations (<2 mg l(-1)). Desorption of the adsorbed Hg(2+) in 0.01M KCl (simulating soil solution) was minimal, but was significantly enhanced by the change of pH, and the presence of organic acids or competitive cations. The desorption of Hg(2+) in the soils decreased with pH from 3.0 to 5.0, leveled off at pH 5.0-8.0, but increased with pH from 7.0 to 9.0. The presence of organic ligands enhanced Hg(2+) desorption in the soils except for YRS, in which the addition of tartaric, malic, or oxalic acid reduced Hg(2+) desorption at low concentrations (<10(-4)M), but Hg(2+) desorption generally increased with organic acid concentration. Citric acid was most effective in increasing Hg(2+) desorption, followed by tartaric acid and malic acid; and oxalic acid was the least effective. Desorption of adsorbed Hg(2+) increased with increasing concentrations of added Cu(2+) or Zn(2+). Applied Cu(2+) increased Hg(2+) desorption more than Zn(2+) at the same loading rate. CAPSULE: The effects of organic acids and competitive cations on Hg desorption in soil-water system are related to their concentrations, basic chemical properties, and soil properties.  相似文献   

8.
Huang SS  Liao QL  Hua M  Wu XM  Bi KS  Yan CY  Chen B  Zhang XY 《Chemosphere》2007,67(11):2148-2155
We investigated concentrations of Hg, Cd, Pb, Zn, Cu, As, Ni, and Cr in samples of soil, cereal, and vegetables from Yangzhong district, China. Compared to subsoils, the sampled topsoils are enriched in Hg, Cd, Cu, Pb, Zn, and As. High levels of Cd and Hg are observed in most agricultural soils. Concentrations of Cr and Ni show little spatial variation, and high Cu, Pb, and Zn contents correspond well to areas of urban development. High As contents are primarily recorded at the two ends of the sampled alluvion. The contents of Cd, Hg, and total organic carbon (TOC) increase gradually to maximum values in the upper parts of soil profiles, while Cr and Ni occur in low concentrations within sampled profiles. As, Pb, Cu, and Zn show patterns of slight enrichment within the surface layer. Compared to data obtained in 1990, Cd and Hg show increased concentrations in 2005; this is attributed to the long-term use of agrochemicals. Cr and Ni contents remained steady over this interval because they are derived from the weathering of parent material and subsequent pedogenesis. The measured As, Cu, Pb, and Zn contents show slight increases over time due to atmospheric deposition of material sourced from urban anthropogenic activity. Low concentrations of heavy metals are recorded in vegetables and cereals because the subalkaline environment of the soil limits their mobility. Although the heavy metal concentrations measured in this study do not pose a serious health risk, they do affect the quality of agricultural products.  相似文献   

9.
Previous research showed a regional Cu enrichment of 6 mg kg−1 in the top soil of the Ypres war zone (Belgium), caused by corrosion of WWI shell fragments. Further research was required since in addition to Cu, also As, Pb, and Zn were used during the manufacturing of ammunition. Therefore, an additional data collection was conducted in which the initial Cu data set was tripled to 731 data points and extended to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) which permitted (1) to evaluate the environmental impact of the heavy metals at a regional scale and (2) to assess their regional spatial occurrence by performing an optimized geostatistical modeling. The results showed no pollution at a regional scale, but sometimes locally concentrations exceeded the soil sanitation threshold, especially for Cu, Pb, and Zn. The spatial patterns of Ni and Cr were related to variations in soil texture whereas the occurrences of Cu and Pb were clearly linked to WWI activities. This difference in spatial behavior was confirmed by an analysis of coregionalization.  相似文献   

10.
When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (>50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550°C with a heating rate of 5°C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However, executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550°C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg.
ImplicationsA remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.  相似文献   

11.
This paper presents results from a survey of the heavy metal distribution in sediments in the drainage basin and estuary of the Sado River (Portugal). In the drainage basin, heavy metals originate mostly from pyrite outcrop erosion and mining activities (Cd, Zn, Cu and locally Hg, Pg), and also from crust erosion (Sn, Ni, Ti, Zr). These sources are not correlated with the particulate organic carbon (POC) and so the metals are thought to be in inorganic forms in this area. Anthropogenic heavy metal sources (urban and industrial) are found in the lower estuary (Sn, Cd, Hg, Zn, Pb and Cu) along with high POC concentrations. In this zone, these metals are thought to be strongly adsorbed onto organic particles. Furthermore, organo-metallic species are likely to be present, as demonstrated in the case of Sn, since methyl- and butyl-tin species were detected in sediments from this area. This suggests the need for the detection of organo-metallic species to understand the heavy metal geochemical cycles. No long-term changes in metal concentrations are found in sediment cores, except in the middle estuary (Zn, Cu) due to the development of mining activities on an industrial scale in the 1860s.  相似文献   

12.
Influence of heavy metals on the microbial degradation of diesel fuel   总被引:3,自引:0,他引:3  
Riis V  Babel W  Pucci OH 《Chemosphere》2002,49(6):559-568
The degradation of diesel fuel by a microbial community from a soil polluted by heavy metals (h.m.) in the presence of Cu, Ni, Zn, Pb, Cd, Hg and Cr (as chromate) was investigated. Experiments were conducted with soil slurries and the extracted community in liquid cultivation. The concentrations applied were in the sub-mM and mM range. Whereas the slurries displayed no significant effect, degradation in liquid culture was increasingly inhibited by higher metal concentrations. The course of degradation in suspension was demonstrated by the oxygen consumption. The order of toxicity was found to be: Hg > Cr(VI) > Cu > Cd > Ni > Pb > Zn. The absence of any effect for slurries was due to the non-availability of the metals in the soil, and to precipitation or adsorption to the soil in the case of amendment. The paper also includes results on the availability of h.m. and changes to the community after exposure.  相似文献   

13.
雷州半岛土壤重金属分布特征及其污染评价   总被引:6,自引:1,他引:5  
在雷州半岛采集了106个土壤表层样品,分析了其中8种重金属元素(Cu、Pb、Zn、Cr、Ni、Cd、Hg和As)的全量.结果表明,雷州半岛土壤重金属污染由高到低排序为Ni>Cr>Hg>Cu>Zn>Cd>As>Pb,Zn、Cd、As和Pb质量浓度均没有超标,Hg和Cu质量浓度超标率亦不高,但Ni和Cr平均质量浓度达49.81、87.13 mg/kg,高于国内外其他对照区域,超标率分别为25.47%和24.53%;重金属元素在雷州半岛各土壤利用类型中分布规律不明显,按4种主要土壤利用类型受重金属污染程度大小排序为甘蔗地>果园土>水田>菜地;雷州半岛土壤综合污染指数总平均为0.970,土壤总体上尚清洁,重金属污染处于警戒水平;雷州半岛各区域中,徐闻、雷州两地土壤重金属质量浓度明显高于其他地区,其主要原因是徐闻、雷州两地成土母质主要为玄武岩,造成土壤Cr、Ni及其他重金属背景值较高.  相似文献   

14.
焦化废水处理过程所排放污泥中重金属的含量及化学形态是否构成环境风险将直接影响污泥处置方法的选择,为此,实验采用BCR顺序提取法分析了焦化废水处理站外排污泥中重金属(Cd、Hg、Pb、Cr、As、Ni、Zn、Cu和Mn)的形态特征,并采用地累积指数(Igeo)和潜在生态危害指数(RI)评价了重金属对土壤的潜在环境风险。研究结果表明:除Ni主要以可氧化态存在外,焦化废水外排污泥中其他几种重金属元素主要存在于残渣态,重金属元素的含量低于《城镇污水处理厂污染物排放标准(GB18918—2002)》中的控制限值;与城市污泥相比,焦化废水外排污泥具有低Pb、Cr、Zn、Cu含量,而高Cd、Hg、Mn含量的特点;基于Igeo和RI的评价结果,Cd和Hg是外排污泥中具有一定环境风险的元素,需要考虑其下游去向。焦化废水处理外排污泥中主要存在残渣态重金属成分,不表现为很高的环境风险,其处置应重点考虑其中有机污染物特别是POPs。  相似文献   

15.
Su DC  Wong JW  Jagadeesan H 《Chemosphere》2004,56(10):957-965
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited.  相似文献   

16.
Principal components analysis (PCA) and correlation analysis were used to estimate the contribution of four components related to pollutant sources on the total variation in concentrations of Cu, Zn, Pb, Cd, As, Se, Hg, Fe and Mn in surface soil samples from a valley in east China with numerous copper and zinc smelters. Results indicate that when carrying out source identification of inorganic pollutants their tendency to migrate in soils may result in differences between the pollutant composition of the source and the receptor soil, potentially leading to errors in the characterization of pollutants using multivariate statistics. The stability and potential migration or movement of pollutants in soils must therefore be taken into account. Soil physicochemical properties may offer additional useful information. Two different mechanisms have been hypothesized for correlations between soil heavy metal concentrations and soil organic matter content and these may be helpful in interpreting the statistical analysis.  相似文献   

17.
Jonsson CM  Aoyama H 《Chemosphere》2007,69(6):849-855
Acid phosphatase plays important roles in algae metabolism such as availability and recycling of inorganic phosphate, autophagic digestive processes and fertilization. Chemicals released into the environment from agriculture activities may impair algae phosphatase activity. The aim of this work was to evaluate the in vitro effect of twenty-four organic compounds and six metals used as pesticides, or present as contaminants in sewage sludge, on the acid phosphatase activity extracted from Pseudokirchneriella subcapitata. Results demonstrated that only the linear surfactant alkyl benzenesulphonate (LAS) and the heavy metals Hg(2+), Al(3+) and Cu(2+) markedly altered (50%) the enzyme activity. Join action inhibition studies indicated that Hg(2+) was more potent inhibitor than Al(3+) or LAS, and that the Hg(2+)+Al(3+) and Hg(2+)+LAS mixtures have, respectively, additive and slight antagonism effects. Copper, which demonstrated an activator effect when preincubated with the enzyme, behaved as a slight antagonist for the inhibitor effect of Hg(2+).  相似文献   

18.
This study was designed to evaluate the impact of sewage sludge spreading on tropical soilborne heavy metal speciation. Sludgeborne heavy metal speciation was also assessed, and the potential mobility of the elements was classified as follows: Zn>Ni>Cu approximately Cr. Two sequential extraction procedures were applied to study Cr, Cu, Ni and Zn speciation in control soils and sludge-amended soils. We demonstrated that sewage sludge spreading over a 2-year period did not have an impact on soilborne heavy metal concentrations but affected speciation of the most mobile fractions of Ni and Zn. Both protocols were consistent for the organic matter fractions, with an increase in Cu, Zn and Cr concentrations in the amended soil as compared to the control soil. In addition, we highlighted that the two protocols characterized different pools of organic matter and that organic compounds remained in the solid matrix after extraction. With respect to the reducible fraction, completely opposite results were obtained with the two protocols and the solid residue study revealed that the two schemes were ineffective in characterizing iron and manganese fractions.  相似文献   

19.
The accumulation of heavy metals in farmland has become an important issue related to food security and environmental risk. The annual inputs of heavy metals (As, Cd, Hg, Pb, Cr, Cu, and Zn) to agricultural soil for a full year in Hainan Island have been studied. Three fluxes through the cultivated horizon were considered: (1) atmospheric depositions, (2) fertilization, and (3) irrigation water. The corresponding samples were collected and analyzed on a large regional scale. The total input fluxes show obvious spatial variability among different regions. The inventory of heavy metal inputs to agricultural land demonstrates that agricultural soil is potentially at risk of heavy metal accumulation from irrigation water. The potential at risk of heavy metal accumulation from atmospheric deposition and fertilizer is relatively low compared to irrigation. The results indicate that Hg is the element of prior concern for agricultural soil, followed by Cd and As, and other heavy metal elements represent little threat to the environment in the study area. This work provides baseline information to develop policies to control and reduce toxic elements accumulated in agricultural soil.  相似文献   

20.
乌梁素海表层沉积物重金属与营养元素含量的统计分析   总被引:7,自引:0,他引:7  
对乌梁素海表层沉积物营养盐与重金属的分布情况进行研究,应用SPSS统计分析软件对乌梁素海表层沉积物重金属与营养元素进行相关分析和因子分析,并对重金属元素进行聚类分析。营养元素与重金属间的相关分析表明:重金属元素Cu、Cr、Pb和Cd相互间具有极显著的正相关性;有机质与As和Hg呈极显著的正相关;总氮与Hg呈极显著相关,与As呈显著相关,而与Pb呈极显著负相关,与Cd呈显著负相关;总磷与As呈显著负相关。重金属元素间的R-型聚类分析结果将本论文研究的9种金属元素分为3类。采用主成分分析法对乌梁素海表层沉积物重金属与营养元素进行因子分析,得到4个因子,并进一步分析讨论了各主成分的科学内涵。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号