首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim SK  Kim KH  Ihm SK 《Chemosphere》2007,68(2):287-292
The nature of active copper species is well-known to vary with copper loading, i.e., isolated Cu(2+) to bulk CuO. In this work, however, the effect of copper loading on the activity and the selectivity was investigated for the wet oxidation of phenol over CuO(x)/Al(2)O(3) catalysts. The activity and the mineralization selectivity of the catalysts increased with copper loading up to 7wt% and remained almost the same at a higher loading. The optimum copper loading was about 7wt% for the wet oxidation of phenol over CuO(x)/Al(2)O(3) catalysts in this work. The nature of copper species with different loading was characterized with TPR, XRD, and XANES. The chemical states of copper in the CuO(x)/Al(2)O(3) catalysts were confirmed as varying with copper loading: isolated Cu(2+) ions for 1wt%; highly dispersed Cu(2+) cluster for 5wt% and 7wt%, and bulk CuO for 10-25wt%. The stability of the CuO(x)/Al(2)O(3) catalysts with different copper loading was also studied with respect to carbonaceous deposits and copper leaching.  相似文献   

2.
Sajiki J  Masumizu T 《Chemosphere》2004,57(4):241-252
Identification of reactive oxygen species (ROS) that contribute to bisphenol-A (BPA) degradation and monitoring of BPA at various concentrations in human serum under Fenton reaction conditions were carried out using electron spin resonance (ESR) spectrophotometry and high performance liquid chromatography with electrochemical detection (HPLC-ECD). BPA recovery decreased with increasing Fe concentration and time, both with a Fenton reaction using Fe(II), and with a Fenton-like reaction using Fe(III). In these reactions, BPA dose-dependently decreased the intensity of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-*OH, up to 1 microg/ml BPA, and no change in DMPO-O(2)(?-) intensity was observed. The decrease in BPA recovery was inhibited strongly by addition of serum under Fenton-like reaction conditions, and there was a negative correlation between turbidity and BPA recovery. To clarify the mechanism by which serum inhibits BPA degradation, the relationship between BPA recovery and sample turbidity, and characteristics of the precipitates were investigated using spectrophotometry and X-ray analysis. The precipitate formed in the serum-containing sample consisted of C, S, O, P and Fe. BPA degradation was also inhibited under Fenton-like reaction conditions in phosphate buffered saline (PBS), and a precipitate consisting of O, P, and Fe appeared. Precipitates also appeared in authentic albumin and gamma-globulin when sulfate was added with Fenton reagents. After precipitate removal, both Fe and protein concentrations in the supernatant of the protein solutions with sulfate decreased with increasing Fe addition. We demonstrate here that hydroxyl radical generation from Fenton or Fenton-like reactions can degrade BPA, and that serum strongly inhibits BPA degradation, not only by competing with BPA for hydroxyl radicals, but also by trapping Fe with oxidative components present in the serum.  相似文献   

3.
Kitis M  Kaplan SS 《Chemosphere》2007,68(10):1846-1853
The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.  相似文献   

4.
针对废水湿式双氧水催化氧化,采用浸渍法制备Cu催化剂,研究非均相Cu催化剂在常温常压湿式双氧水催化氧化中的稳定性与失活问题。研究表明,催化剂制备条件及催化氧化反应条件对催化剂中Cu2+溶出均有影响。研究同时表明,催化剂失活与活性组分流失和活性组分被有机中间产物覆盖有关,高温焙烧可对催化剂再生。  相似文献   

5.
A method for a photochemically induced mineralization of CCl4 is described in which use is made of reductive radicals. The UVC-photolysis (254 nm) of H2O2 added to aqueous solutions of CCl4 is leading to the homolysis of the oxidant yielding hydroxyl radicals (HO) that subsequently react with added methanol to generate hydroxymethyl radicals (CH2OH). The latter radicals initiate mineralization of CCl4 by reductive C-Cl bond splitting. CHCl3, C2Cl4 and C2Cl6 were found as reaction intermediates, but are quantitatively depleted in a parallel oxidative reaction manifold leading to mineralization. Carbon dioxide radical anion, CO2(-), an intermediate in the mineralization pathway of methanol, is also shown to initiate the mineralization of CCl4 by reductive dechlorination. A reaction mechanism is proposed and validated with computer simulations of all the experimental results.  相似文献   

6.
Evans CS  Dellinger B 《Chemosphere》2006,63(8):1291-1299
As a model brominated hydrocarbon that may form brominated dioxins, we studied the surface-mediated, oxidative thermal degradation of 2-bromophenol on a supported copper oxide catalyst in a 1 mm i.d., fused silica flow reactor at a constant concentration of 90 ppm over a temperature range from 250 to 550 degrees C. Observed products included: dibenzo-p-dioxin (DD), 1-monobromodibenzo-p-dioxin (1-MBDD), dibromodibenzo-p-dioxin (DBDD), tribromodibenzo-p-dioxin (TrBDD), 4-monobromodibenzofuran (4-MBDF), 2,4,6-tribromophenol, 2,4- and 2,6-dibromophenol, and polybrominated benzenes. The results are compared and contrasted with previous work on surface catalyzed oxidative thermal degradation of 2-chlorophenol as well as our own work with the surface-catalyzed pyrolytic thermal degradation of 2-bromophenol. Typically 20 to 200x higher yields of PBDDs are observed for 2-bromophenol than for the analogous PCDDs for 2-chlorophenol. However the anticipated PBDF, 4,6-DBDF, was not observed and 4-MBDF was observed at very low yields. Surprisingly, the maximum yields of PBDDs were observed at higher temperatures than under pyrolytic conditions. This is attributed to regeneration of the catalytic surface due to the presence of oxygen. Higher yields of polybrominated phenols and polybrominated benzenes were also observed than for the analogous chlorinated phenols and benzenes from the oxidation of 2-chlorophenol. This can be attributed to the ease of bromination over chlorination based on the higher abundance of bromine atoms present for 2-bromophenol than chlorine atoms present for 2-chlorophenol.  相似文献   

7.
Zhu CZ  Ouyang B  Wang JQ  Huang L  Dong WB  Hou HQ 《Chemosphere》2007,67(5):855-861
The 355 nm photon-initiated microscopic reaction mechanisms of the mixed aqueous solution of nitrobenzene and nitrous acid in the presence or absence of O(2) were studied by the laser flash photolysis technique. The main transient absorption peaks in the recorded spectra were assigned and the growth/decay trends of several transient species were investigated. It was found that the OH radical formed from the photolysis of nitrous acid triggered most of the subsequent radical reactions. The rate constant of the reaction between OH radical and nitrobenzene was measured to be (3.4 +/- 0.1) x 10(9) l mol(-1) s(-1). The product from this reaction, namely C(6)H(5)NO(2)-OH adduct, was found to react with O(2) to yield C(6)H(5)NO(2)-OHO(2) adduct with a rate constant of (1.6 +/- 0.2) x 10(9) l mol(-1) s(-1). Final steady-state products were identified by GC/MS analysis and were in accordance with the transient spectroscopic results. The possible reaction pathways were proposed.  相似文献   

8.
Chelating sorbents with diethylenetriaminepenta(methylene-phosphonic acid) (DTPMPA) and ethylenediaminetetraacetic acid ligands immobilized on zirconia matrix were prepared and subsequently saturated with Cu(II). All the Cu chelates catalyzed decomposition of H(2)O(2) yielding highly reactive hydroxyl radicals. All of them were also able to catalyze degradation of polycyclic aromatic hydrocarbons (anthracene, benzo[a]pyrene and benzo[b]fluoranthene). The most effective DTPMPA-based catalysts G-32 and G-35 (10 mg ml(-1) with 100 mmol H(2)O(2)) caused almost complete decomposition of 15 ppm anthracene and benzo[a]pyrene during a five day catalytic cycle at 30 degrees C. Anthracene-1,4-dione was the main product of anthracene oxidation by all catalysts. The catalysts were active in several cycles without regeneration.  相似文献   

9.
Salem IA 《Chemosphere》2001,44(5):1109-1119
Copper(II) amine complexes supported on Amberlyst-15 cation resin were prepared and characterized by SEM, EDX and FTIR measurements. The kinetics of the heterogeneous oxidation of an organic dye, crystal violet, with H2O2 catalyzed by the supported catalysts was investigated in aqueous solution. The rate of reaction increases with increasing stability of the copper(II) amine complexes. The oxidation rate attained a first-order in the catalyst and the dye only at lower concentrations and second order in H2O2. A very fast formation of a peroxo-dye intermediate resulting from the interaction of H2O2 with the dye even in the presence of the catalyst was observed.  相似文献   

10.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

11.
Chaudhary AJ  Grimes SM 《Chemosphere》2008,72(11):1636-1642
The effects of the presence of copper on the photooxidation of phenol and 4-chlorophenol and of the presence of the phenols on the recovery of copper by electrodeposition are studied in three systems: a photolytic cell in the presence and absence of TiO2 as a catalyst or H2O2 as an oxidant; an electrolytic cell and a combined photolytic-electrolytic system. The optimum system for the simultaneous removal of copper and destruction of the phenols which overcomes the effects of copper-phenol reactions is a combined system with concentrator electrode technology incorporated into the electrolytic cell. This combined system achieves >99% removal of copper and destruction of phenol or 4-chlorophenol in an 8 h period.  相似文献   

12.
The removal of sulfur dioxide (SO2) from simulated flue gases streams (N2/O2/H2O/SO2) was experimentally investigated using microgap discharge. In the experiment, the thinner dielectric layers of aluminum oxide (Al2O3) were used to form the microgap discharge. With this physical method, a high concentration of hydroxyl (OH*) radicals were produced using the ionization of O2 and H2O to further the conversion of SO2 into sulfuric acid (H2SO4) at 120 degrees C in the absence of any catalysts and absorbents, which were captured with the electrostatic precipitator (ESP). As a result, the increase of discharge power and concentrations of O2 and H2O increased the production of OH. radicals resulting in enhanced removal of SO2 from gas streams. With the test and analysis, a number of H2SO4 droplets were produced in experiment. Therefore, a new method for removal of SO2 in semidry method without ammonia (NH3) additive was found.  相似文献   

13.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution   总被引:1,自引:0,他引:1  
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.  相似文献   

14.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   

15.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

16.
Wang CH  Lin SS  Chen CL  Weng HS 《Chemosphere》2006,64(3):503-509
A fixed bed reactor was used to assess the catalytic incineration of toluene by various transition-metal oxide species supported on gamma-Al(2)O(3). CuO/gamma-Al(2)O(3) was found to be the most active of seven catalysts investigated. The CuO species, with a Cu content of 5% (wt), was hence used with four different supports (CeO(2), gamma-Al(2)O(3), TiO(2) and V(2)O(5)) in order to define the optimal combination. Results of the catalytic incineration of toluene, X-ray diffraction (XRD) analysis, oxygen-temperature programmed desorption (O(2)-TPD), toluene-temperature programmed desorption (toluene-TPD) and hydrogen-temperature programmed reduction (H(2)-TPR) showed that CuO/CeO(2) was the most active catalyst, followed by CuO/gamma-Al(2)O(3). The activity of CuO/CeO(2) with respect to the VOC molecule was observed to follow this sequence: toluen>p-xylene>benzene. The addition of water vapor or CO(2) significantly inhibited the activity of the CuO/CeO(2) and CuO/gamma-Al(2)O(3) catalysts. The inhibiting effect of both was reversible for CuO/gamma-Al(2)O(3). For CuO/CeO(2), the inhibiting effect of CO(2) was reversible and even insignificant at a higher temperature (220 degrees C), but the effect of H(2)O vapor was somewhat irreversible at lower incineration temperatures (220 degrees C). For complete oxidation of toluene, the required reaction temperature increased with gas hourly space velocity (GHSV) and toluene inlet concentration.  相似文献   

17.
Salem IA  El-Maazawi MS 《Chemosphere》2000,41(8):1173-1180
The catalyzed kinetics of the oxidative mineralization of the cationic dye methylene blue, phenothiazonium, 3,7-bis(dimethylamino)-chloride, with hydrogen peroxide were studied both in buffered and unbuffered solutions. The supported alumina catalysts used were in the form of copper(II), cobalt(II), manganese(II), and nickel(II)-ions. Also, some copper(II)-complexes were used, e.g. copper(II)-ammine ([Cu(amm)4]2+), copper(II)-ethylenediamine ([Cu(en)2]2+) and copper(II)-monoethanolamine ([Cu(mea)2]2+). The reaction is first order with respect to methylene blue. On the other hand, the order with respect to hydrogen peroxide is concentration range dependent. This range depends strongly on the catalyst used. At lower [H2O2], the order was 1 which then decreases with increasing [H2O2] passing through 0 at the maximum rate and finally becomes negative. This phenomenon is parallel to the formation of a colored intermediate on the surface of the catalyst. This suggests that the intermediate has an inhibiting effect on the rate of color removal. Moreover, the rate of the reaction was found to be strongly dependent on the pH of the solution and its ionic strength. It increases with increasing both pH and the concentration of added potassium chloride. Also, the rate of reaction is inhibited in presence of sodium dodecylsulfate anionic surfactant. The repeated use of the different catalysts showed that their catalytic activities are almost unaffected. A reaction mechanism was proposed with the formation of free radicals as reactive intermediates.  相似文献   

18.
The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 microm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

19.
The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling.  相似文献   

20.
The Fenton reaction has been applied to the degradation of 4-chlorophenol in aqueous solutions containing various anions. The rate of the reaction was found to decrease in the following order of anions (at the same concentrations): CIO (4) ~ NO (3)- > SO(4) (2-) > CI(-)> >HPO(4) (2-) > HCO(3)(-). Degradation of the pollutant containing the above anions at concentrations typical of those found in groundwater and surface waters was affected in a similar way. The results are discussed in terms of the effects of these anions on the rates of the oxidation of ferrous anion as well as on their role in the scavenging of hydroxyl radical  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号