首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
The feasibility of the sorption enhanced water gas shift (SEWGS) process under sour conditions is shown. The sour-SEWGS process constitutes a second generation pre-combustion carbon capture technology for the application in an IGCC. As a first critical step, the suitability of a K2CO3 promoted hydrotalcite-based CO2 sorbent is demonstrated by means of adsorption and regeneration experiments in the presence of 2000 ppm H2S. In multiple cycle experiments at 400 °C and 5 bar, the sorbent displays reversible co-adsorption of CO2 and H2S. The CO2 sorption capacity is not significantly affected compared to sulphur-free conditions. A mechanistic model assuming two different sites for H2S interaction explains qualitatively the interactions of CO2 and H2S with the sorbent. On the type A sites, CO2 and H2S display competitive sorption where CO2 is favoured. The type B sites only allow H2S uptake and may involve the formation of metal sulphides. This material behaviour means that the sour-SEWGS process likely eliminates CO2 and H2S simultaneously from the syngas and that an almost CO2 and H2S-free H2 stream and a CO2 + H2S stream can be produced.  相似文献   

2.
Calcium looping (CaL) is a promising post-combustion CO2 capture technology which is carried out in a dual fluidized bed (DFB) system with continuous looping of CaO, the CO2 carrier, between two beds. The system consists of a carbonator, where flue gas CO2 is adsorbed by CaO and a regenerator, where captured CO2 is released. The CO2-rich regenerator flue gas can be sequestered after gas processing and compression. A parametric study was conducted on the 10 kWth DFB facility at the University of Stuttgart, which consists of a bubbling fluidized bed carbonator and a riser regenerator. The effect of the following parameters on CO2 capture efficiency was investigated: carbonator space time, carbonator temperature and calcium looping ratio. The active space time in the carbonator, which is a function of the space time and the calcium looping ratio, was found to strongly correlate with the CO2 capture efficiency. BET and BJH techniques provided surface area and pore volume distribution data, respectively, for collected sorbent samples. The rate of sorbent attrition was found to be 2 wt.%/h which is below the expected sorbent make-up rate required to maintain sufficient sorbent activity. Steady-state CO2 capture efficiencies greater than 90% were achieved for different combinations of operational parameters. Moreover, the experimental results obtained were briefly compared with results derived from reactor modeling studies. Finally, the implications of the experimental results with respect to commercialization of the CaL process have been assessed.  相似文献   

3.
A novel concept for capturing CO2 from biomass combustion using CaO as an active solid sorbent of CO2 is discussed and experimentally tested. According to the CaO/CaCO3 equilibrium, if a fuel could be burned at a sufficiently low temperature (below 700 °C) it would be possible to capture CO2in situ” with the CaO particles at atmospheric pressure. A subsequent step involving the regeneration of CaCO3 in a calciner operating at typical conditions of oxyfired-circulating fluidized combustion would deliver the CO2 ready for purification, compression and permanent geological storage. Several series of experiments to prove this concept have been conducted in a 30 kW interconnected fluidized bed test facility at INCAR-CSIC, made up of two interconnected circulating fluidized bed reactors, one acting as biomass combustor-carbonator and the other as air-fired calciner (which is considered to yield similar sorbent properties than those of an oxyfired calciner). CO2 capture efficiencies in dynamic tests in the combustor-carbonator reactor were measured over a wide range of operating conditions, including different superficial gas velocities, solids circulation rates, excess air above stoichiometric, and biomass type (olive pits, saw dust and pellets). Biomass combustion in air is effective at temperatures even below the 700 °C, necessary for the effective capture of CO2 by carbonation of CaO. Overall CO2 capture efficiencies in the combustor-carbonator higher than 70% can be achieved with sufficiently high solids circulation rates of CaO and solids inventories. The application of a simple reactor model for the combined combustion and CO2 capture reactions allows an efficiency factor to be obtained from the dynamic experimental test that could be valuable for scaling up purposes.  相似文献   

4.
In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO2 capture is presented. This process makes use of the CaO capability for CO2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO3 is calcined, the carbonator where the CO2 produced in the combustor is captured, the supercritical steam cycle and the CO2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO2 compression system.  相似文献   

5.
In this work several Li4SiO4-based sorbents from fly ashes for CO2 capture at high temperatures have been developed. Three fly ash samples were collected and subjected to calcination at 950 °C in the presence of Li2CO3. Both pure Li4SiO4 and fly ash-based sorbents were characterised and tested for CO2 sorption at different temperatures between 400 and 650 °C and adding different amounts of K2CO3 (0–40 mol%). To examine the sorbents performance, multiple CO2 sorption/desorption cycles were carried out. The temperature and the presence of K2CO3 strongly affect the CO2 sorption capacity for the sorbents prepared from fly ashes. When the sorption temperature increases by up to 600 °C both the CO2 sorption capacity and the sorption rate increase significantly. Moreover when the amount of K2CO3 increases, the CO2 sorption capacity also increases. At optimal experimental conditions (600 °C and 40 mol% K2CO3), the maximum CO2 sorption capacity for the sorbent derived from fly ash was 107 mg CO2/g sorbent. The Li4SiO4-based sorbents can maintain its original capacity during 10 cycle processes and reach the plateau of maximum capture capacity in less than 15 min, while pure Li4SiO4 presents a continual upward tendency for the 15 min of the capture step and attains no equilibrium capacity.  相似文献   

6.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   

7.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

8.
Capture and storage of CO2 from fossil fuel fired power plants is drawing increasing interest as a potential method for the control of greenhouse gas emissions. An optimization and technical parameter study for a CO2 capture process from flue gas of a 600 MWe bituminous coal fired power plant, based on absorption/desorption process with MEA solutions, using ASPEN Plus with the RADFRAC subroutine, was performed. This optimization aimed to reduce the energy requirement for solvent regeneration, by investigating the effects of CO2 removal percentage, MEA concentration, lean solvent loading, stripper operating pressure and lean solvent temperature.Major energy savings can be realized by optimizing the lean solvent loading, the amine solvent concentration as well as the stripper operating pressure. A minimum thermal energy requirement was found at a lean MEA loading of 0.3, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa, resulting in a thermal energy requirement of 3.0 GJ/ton CO2, which is 23% lower than the base case of 3.9 GJ/ton CO2. Although the solvent process conditions might not be realisable for MEA due to constraints imposed by corrosion and solvent degradation, the results show that a parametric study will point towards possibilities for process optimisation.  相似文献   

9.
Methodology is presented for a first-order regional-scale estimation of CO2 storage capacity in coals under sub-critical conditions, which is subsequently applied to Cretaceous-Tertiary coal beds in Alberta, Canada. Regions suitable for CO2 storage have been defined on the basis of groundwater depth and CO2 phase at in situ conditions. The theoretical CO2 storage capacity was estimated on the basis of CO2 adsorption isotherms measured on coal samples, and it varies between ∼20 kt CO2/km2 and 1260 kt CO2/km2, for a total of approximately 20 Gt CO2. This represents the theoretical storage capacity limit that would be attained if there would be no other gases present in the coals or they would be 100% replaced by CO2, and if all the coals will be accessed by CO2. A recovery factor of less than 100% and a completion factor less than 50% reduce the theoretical storage capacity to an effective storage capacity of only 6.4 Gt CO2. Not all the effective CO2 storage capacity will be utilized because it is uneconomic to build the necessary infrastructure for areas with low storage capacity per unit surface. Assuming that the economic threshold to develop the necessary infrastructure is 200 kt CO2/km2, then the CO2 storage capacity in coal beds in Alberta is greatly reduced further to a practical capacity of only ∼800 Mt CO2.  相似文献   

10.
This paper explores the integration and evaluation of a power plant with a CaO-based CO2 capture system. There is a great amount of recoverable heat in the CaO-based CO2 capture process. Five cases for the possible integration of a 600 MW power plant with CaO-based CO2 capture process are considered in this paper. When the system is configured so that recovered heat is used to replace part of the boiler heat load (Case 2), modelling not only shows that this is the system recovering the most heat of 1008.8 MW but also results in the system with the lowest net power output of 446 MW and the second lowest of efficiency of 34.1%. It is indicated that system performance depends both on the amount of heat recovery and the type of heat utilization. When the system is configured so that a 400 MW power plant is built using the recovered heat (Case 4), modelling shows that this is the system with the most net power output of 846 MW, the highest efficiency of 36.8%, the lowest cost of electricity of 54.3 €/MWh and the lowest cost of CO2 avoided of 28.9 €/tCO2. This new built steam cycle will not affect the operation of the reference plant which vents its CO2 to the atmosphere, highly reducing the connection between the CO2 capture process and the reference plant which vents its CO2 to the atmosphere. The average cost of electricity and the cost of CO2 avoided of the five cases are about 58.9 €/kWh and 35.9 €/tCO2, respectively.  相似文献   

11.
Mesoporous magnesium oxide (MgO) was synthesized using mesoporous carbon CMK-3 obtained from mesoporous SBA-15 as exotemplate. P123 was used as the structure-directing template and rice husk ash (RHA) as the silica source for the synthesis of SBA-15, which was subsequently treated with sucrose and sulphuric acid to obtain mesoporous carbon (CMK-3). X-ray powder diffraction (XRD) results and the type-IV adsorption isotherm with H1 hysteresis obtained by N2 adsorption/desorption study for SBA-15, CMK-3 and mesoporous MgO suggests its resemblance with materials synthesized using conventional silica sources. Mesoporous MgO was subjected for CO2 adsorption study in TGA; adsorption was 8 and 10 wt% at 25 and 100 °C, respectively. Finally, mesoporous MgO is selective to CO2 gas, thermally stable and regenerable. Thus, this study contributes a better route to enhance CO2 gas adsorption and use ecological waste rice husk for the synthesis of such efficient mesoporous materials.  相似文献   

12.
A post-combustion CO2 capture process intended for offshore operations has been designed and optimised for integration with a natural gas-fired power plant on board a floating structure developed by the Norway-based company Sevan Marine ASA—designated Sevan GTW (gas-to-wire). The concept is constrained by the structure of the floater carrying a SIEMENS modular power system rated at 450 MWe, with a capture rate of 90% and CO2 compression (1.47 Mtpa) for pipeline pressure at 12 MPa. A net efficiency of 45% (based on a lower heating value) is estimated for the system with CO2 capture, thus suggesting that the post-combustion CO2 capture system is accountable for a fuel penalty of nine percentage points.The rationale behind the technology selection is the urgency of replacing the dispersed aero-derivative gas turbines which power the offshore oil and gas production units in Norwegian waters with near-zero emission power.As (inherently) fresh water usually constitutes a limiting factor in sea operations, efforts are made to obtain a neutral water balance to obtain an optimal design. This is primarily achieved by controlling the cleaned flue gas temperature at the top of the absorber column.  相似文献   

13.
This review presents a summary of the main interactions that occur during the carbon dioxide (CO2) adsorption at the surface of steel slags with basic (CaO, MgO), amphoteric (Al2O3, Cr2O3, TiO2, MnO, iron oxides) and acidic (SiO2) oxides. The high content of metal oxides in steel slags gives them a great potential to adsorb CO2, reaching a saturation value of about 0.25 kg of CO2/kg of slag. CO2 is physisorbed and chemisorbed on the most of metal oxide types. Generally, the CO2 physisorption on the basic and amphoteric metal oxides involves an electrostatic interaction between the CO2 and the cation from the oxides while the CO2 chemisorption rather implicates the basic sites that acts as the electron donor, and which are associated with O2? ions localized at surface defects. These interactions result in the formation of carbonates (monodentates or unidentates and bidentates). The affinity of oxides for the CO2 and the carbonate formation principally depend of the strength and number of basic sites at their surface and varies as following: basic oxides > amphoteric oxides > acidic oxides. The basic metal oxides generally represent the best electron donors and thus the best CO2 adsorbents due to the high basicity and their great number of reaction sites. Hence, it appears that the surface structure of basic and amphoteric metal oxides which may favour their interaction with the CO2, as well as their basicity is the determinant factor contributing to the formation of carbonate species. The molecular analysis of CO2 adsorption on steel slag metal oxides will provide useful data to identify rate-controlling mechanisms and should be considered for the development of new effective methods for the capture of atmospheric CO2 emissions released from industries.  相似文献   

14.
The biogas upgrading by membrane separation process using a highly efficient CO2-selective polyvinylamine/polyvinylalcohol (PVAm/PVA) blend membrane was investigated by experimental study and simulation with respect to process design, operation optimization and economic evaluation. This blend membrane takes advantages of the unique CO2 facilitated transport from PVAm and the robust mechanical properties from PVA, exhibits both high CO2/CH4 separation efficiency and very good stability. CO2 transports through the water swollen membrane matrix in the form of bicarbonate. CO2/CH4 selectivity up to 40 and CO2 permeance up to 0.55 m3(STP)/m2 h bar at 2 bar were documented in lab with synthesized biogas (35% CO2 and 65% CH4). Membrane performances at varying feed pressures were recorded and used as the simulation basis in this work. The process simulation of an on-farm scale biogas upgrading plant (1000 Nm3/h) was conducted. Processes with four different membrane module configurations with or without recycle were evaluated technically and economically, and the 2-stage in cascade with recycle configuration was proven optimal among the four processes. The sensitivity of the process to various operation parameters was analyzed and the operation conditions were optimized.  相似文献   

15.
The capture of CO2 from a hot stove gas in steel making process containing 30 vol% CO2 by chemical absorption in a rotating packed bed (RPB) was studied. The RPB had an inner diameter of 7.6 cm, an outer diameter of 16 cm, and a height of 2 cm. The aqueous solutions containing 30 wt% of single and mixed monoethanolamine (MEA), 2-(2-aminoethylamino)ethanol (AEEA), and piperazine (PZ) were used. The CO2 capture efficiency was found to increase with increasing temperature in a range of 303–333 K. It was also found to be more dependent on gas and liquid flow rates but less dependent on rotating speed when the speed was higher than 700 rpm. The obtained results indicated that the mixed alkanolamine solutions containing PZ were more effective than the single alkanolamine solutions. This was attributed to the highest reaction rate of PZ with CO2. A higher portion of PZ in the mixture was more favorable to CO2 capture. The highest gas flow rates allowed to achieve a desired CO2 capture efficiency and the correspondent height of transfer unit (HTU) were determined at different aqueous solution flow rates. Because all the 30 wt% single and mixed alkanolamine solutions could result in a HTU less than 5.0 cm at a liquid flow rate of 100 mL/min, chemical absorption in a RPB instead of a packed bed adsorber is therefore suggested to capture CO2 from the flue gases in steel making processes.  相似文献   

16.
Industrial Combined Heat and Power plants (CHPs) are often operated at partial load conditions. If CO2 is captured from a CHP, additional energy requirements can be fully or partly met by increasing the load. Load increase improves plant efficiency and, consequently, part of the additional energy consumption would be offset. If this advantage is large enough, industrial CHPs may become an attractive option for CO2 capture and storage CCS. We therefore investigated the techno-economic performance of post-combustion CO2 capture from small-to-medium-scale (50–200 MWe maximum electrical capacity) industrial Natural Gas Combined Cycle- (NGCC-) CHPs in comparison with large-scale (400 MWe) NGCCs in the short term (2010) and the mid-term future (2020–2025). The analyzed system encompasses NGCC, CO2 capture, compression, and branch CO2 pipeline.The technical results showed that CO2 capture energy requirement for industrial NGCC-CHPs is significantly lower than that for 400 MWe NGCCs: up to 16% in the short term and up to 12% in the mid-term future. The economic results showed that at low heat-to-power ratio operations, CO2 capture from industrial NGCC-CHPs at 100 MWe in the short term (41–44 €/tCO2 avoided) and 200 MWe in the mid-term future (33–36 €/tCO2 avoided) may compete with 400 MWe NGCCs (46–50 €/tCO2 avoided short term, 30–35 €/tCO2 avoided mid-term).  相似文献   

17.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

18.
The carbon dioxide capture and release from aqueous 2,2′-iminodiethanol (DEA) and N-methyl-2,2′-iminodiethanol (MDEA) have been investigated by means of 13C NMR spectroscopy. We have designed two experimental procedures using a gas mixture containing 12% (v/v) CO2 in N2 or air and 0.667 M aqueous solutions of DEA and MDEA. To understand the CO2–amine reaction equilibria, separate experiments of CO2 absorption (at 293, 313 and 333 K) and desorption (at boiling temperature, room pressure) were carried out. The 13C NMR analysis has allowed us to establish: (1) the percentage of CO2 stored in solution as HCO3?, CO32? and DEA carbamate; (2) the formation of DEA carbamate as a function of absorption temperature and time; (3) the slower decomposition of DEA carbamate than that of bicarbonate. In the experiments planned to test the reuse of the regenerated amines, the absorbent solution was continuously circulated in a closed cycle while it was absorbing CO2 in the absorber (set at 293 K) and simultaneously regenerating amine in the desorber (set at 388 K). After the equilibrium has been reached (13 h), the CO2 absorption efficiency is comprised between 84.0% (DEA) and 82.6% (MDEA) and the average amine regeneration efficiency ranges between 69.6% (DEA) and 78.2% (MDEA). Additionally, MDEA is more stable towards thermal degradation than DEA.  相似文献   

19.
Experimental work is performed with a 5A zeolite on a small laboratory column with heating from the wall. Carbon dioxide adsorption occurs at atmospheric pressure and different CO2 concentrations in nitrogen. Comparisons of different methods of desorption by heating, purge and/or vacuum are studied. Desorption by heating only leads to almost pure CO2 (around 99% purity) and a recovery nearly linear to the heating temperature, ranging from 45% at 130 °C to 79% at 210 °C. Recovery can be subsequently increased with a nitrogen purge to more than 98% but the recovered carbon dioxide is diluted due to the dispersive character of the desorption wave and the operation time is long. Increasing the flow rate decreases the desorption time but has no effect on the purity because the total purge volume remains about the same. Substitution of the purge step with a vacuum step leads to pure CO2 and almost total recovery. Desorption under vacuum only without heating leads to pure CO2 (around 99% purity) but limited recovery (85% in the present work).Desorption under vacuum seems to be more simple for large-scale applications. When using a water liquid ring pump, the temperature of the ring must be kept as low as possible to provide a high operating capacity.  相似文献   

20.
Using a combination of experimental (petrophysical and mineralogical) methods, the effects of high-pressure CO2 exposure on fluid transport properties and mineralogical composition of two pelitic caprocks, a limestone and a clay-rich marl lithotype have been studied. Single and multiphase permeability tests, gas breakthrough and diffusion experiments were conducted under in situ p/T conditions on cylindrical plugs (28.5 mm diameter, 10–20 mm thickness).The capillary CO2 sealing efficiency of the initially water-saturated sample plugs was found to decrease in repetitive gas breakthrough experiments on the same sample from 0.74 to 0.41 MPa for the limestone and from 0.64 to 0.43 MPa for the marl. Helium breakthrough experiments before and after the CO2 tests showed a decrease in capillary threshold (snap-off) pressure from 1.81 to 0.62 MPa for the limestone.Repetitive CO2 diffusion experiments on the marlstone revealed an increase in the effective diffusion coefficient from 7.8 × 10?11 to 1.2 × 10?10 m2.Single-phase (water) permeability coefficients derived from steady-state permeability tests ranged between 7 and 56 nano-Darcy and showed a consistent increase after each CO2 test cycle. Effective gas permeabilities were generally one order of magnitude lower than water permeabilities and exhibit the same trend. XRD measurements performed before and after exposure to CO2 did not reveal any distinct change in the mineral composition for both samples. Similarly, no significant changes were observed in specific surface areas (determined by BET) and pore-size distributions (determined by mercury injection porosimetry). High-pressure CO2 sorption experiments on powdered samples revealed significant CO2 sorption capacities of 0.27 and 0.14 mmol/g for the marlstone and the limestone, respectively.The changes in transport parameters in the absence of detectable mineral alterations may be explained by carbonate dissolution and further precipitation along a pH profile across the sample plug which would not be subject to quantitative mineral alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号