首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
The optimised biodegradability test system "O2/CO2 Headspace Test with GC-TCD" is used for the assessment of synthetic ester lubricants. The effects of both additives and usage on biodegradability are examined and discussed. Ester based cutting fluids and hydraulic fluids with and without additives are used under defined conditions at machine tools and hydraulic and plain bearing test benches. The lubricants are characterised additionally with respect to kinematic viscosity, acidity and elemental composition. Furthermore, a formulated mineral oil is characterised before and after usage at an hydraulic test bench. The results clearly show that the mineral oil is far less biodegradable than the ester oils and that their biodegradability is not affected by usage. Biodegradability of the ester oils is mainly depending on the characteristics of the base fluids and not affected by the additives. Antioxidants are influencing stability respectively biodegradability indirectly, since they prevent oxopolymerisation effects. Other effects of usage on biodegradation are not detected. In this context, the antioxidants ensure ready biodegradability and have a positive effect on the environmental fate of synthetic ester lubricants.  相似文献   

3.
Willing A 《Chemosphere》2001,43(1):89-98
The development of lubricants like, e.g. engine and hydraulic oils was traditionally based on mineral oil as a base fluid. This fact is related to the good technical properties and the reasonable price of mineral oils. The Report to the Club of Rome (W.W. Behrens III, D.H. Meadows, D.I. Meadows, J. Randers, The limits of growth, A Report to the Club of Rome, 1972) and the two oil crises of 1979 and 1983, however, elucidated that mineral oil is on principle a limited resource. In addition, environmental problems associated with the production and use of chemicals and the limited capacity of nature to tolerate pollution became obvious (G.H. Brundtland, et al., in: Hauff, Volker (Ed.), World Commission on Environment and Development (WCED), Report of the Brundtland-Commission, Oxford, UK, 1987), and the critical discussion included besides acid rain, smog, heavy metals, and pesticides also mineral oil (especially oil spills like the case Exxon Valdes). A disadvantage of mineral oil is its poor biodegradability and thus its potential for long-term pollution of the environment. From the early development of lubricants for special applications (e.g. turbojet engine oils) it was known, that fatty acid polyol esters have comparable or even better technical properties than mineral oil. Subsequently, innumerable synthetic esters have been synthesized by systematic variation of the fatty acid and the alcohol components. Whereas the alcohol moiety of the synthetic esters are usually of petrochemical origin, the fatty acids are almost exclusively based on renewable resources. The physico-chemical properties of oleochemical esters can cover the complete spectrum of technical requirements for the development of high-performance industrial oils and lubricants (e.g. excellent lubricating properties, good heat stability, high viscosity index, low volatility and superior shear stability). For a comprehensive review of their technical properties see F. Bongardt, in: Jahrbuchfür Praktiker, H. Ziolkowsky (Ed.), Verlag für chemische Industrie GmbH, 1996, pp. 348-361. This article will focus on the ecological properties of oleochemical (synthetic) esters. The environmental relevance of oleochemicals in comparison to petrochemicals is discussed, and then the principles of an ecological assessment are described. The ecotoxicological properties and the biodegradability of oleochemical esters are presented. Finally, the ecological properties of the oleochemical esters are discussed with regard to existing environmental classification and labeling systems.  相似文献   

4.
R A Miles  W J Doucette 《Chemosphere》2001,45(6-7):1085-1090
The aerobic biodegradability of 14 hydrocarbons in two soils was determined using a simple microcosm/respirometric method based on oxygen consumption. Biodegradability was assessed indirectly by measuring the depletion of oxygen over time in the headspace of microcosms containing soil and test chemicals. The microcosms consisted of small glass vials fitted with valves that allowed headspace gas samples to be collected, essentially resulting in a sealed system. Respiration data from control microcosms were obtained from identically treated microcosms with no test chemical. Control data were necessarily included in all calculations of percent of theoretical oxygen demand (%ThOD) for any given test chemical. Two experiments were performed to verify this simple biodegradation test method. First, an experiment was performed in which disappearance of n-tetradecane from the microcosms was measured directly by standard soil extraction and analytical techniques while simultaneously performing this simple respirometric method based on %ThOD with the same test chemical. Second, the method was compared to a well-established radiochemical technique using 14C-phenanthrene. Results of both comparisons showed that the method is both accurate and reliable. The consistent manner with which the data were produced in two different soils show that the method is also very reproducible. The method described here provides a simple and inexpensive method for determining the aerobic biodegradability of organic compounds in soils.  相似文献   

5.
Continuing modifications of fuels like gasoline should include evaluations of the proposed constituents for their potential to damage environmental resources such as subsurface water supplies. Consequently, we developed a screening model to estimate well water concentrations and transport times for gasoline components migrating from underground fuel tank (UFT) releases to typical at-risk community water supply wells. Representative fuel release volumes and hydrogeologic characteristics were used to parameterize the transport calculation. Subsurface degradation processes were neglected in the model in order to make risk-conservative assessments. The model was tailored to individual compounds based on their abundances in gasoline, gasoline-water partition coefficients (Kgw), and organic matter-water partition coefficients (Kom). Transport calculations were conducted for 20 polar and 4 nonpolar compounds found in gasoline, including methyl tert-butyl ether (MTBE) and other ether oxygenates, ethanol, methanol, and some aromatic hydrocarbons. With no calibration, the screening model successfully captured the reported magnitude of MTBE contamination of at-risk community supply wells. Such screening indicates that other oxygenates would cause similar widespread problems unless they were biodegradable. Stochastic analysis of field parameter variability concluded that community supply well contamination estimates had order-of-magnitude reliability. This indicated that such pre-manufacturing analyses may reasonably anticipate widespread environmental problems and/or inspire focused investigations into chemical properties (e.g., biodegradability) before industrial adoption of new fuel formulations.  相似文献   

6.
Wang X  Cook R  Tao S  Xing B 《Chemosphere》2007,66(8):1476-1484
Sorption behavior of hydrophobic organic contaminants (HOCs) (i.e., pyrene, phenanthrene and naphthalene) by native and chemically modified biopolymers (lignin, chitin and cellulose) was examined. Lignins (native and treated) showed nonlinear sorption for all compounds studied, emphasizing their glassy character. Chitins and celluloses had linear isotherms for phenanthrene and naphthalene, illustrating the dominance of partitioning, while pyrene yielded nonlinear isotherms. Sorption capacity (K(oc)) of HOCs was negatively correlated with the polarity [(O+N)/C] of the biopolymers. Aromatic and alkyl+aromatic C percentages, rather than alkyl C content, demonstrated a better correlation with K(oc) values, indicating the importance of aromatic structures for HOC affinity. Hydrophobicity (K(ow))-normalized K(oc) values decreased sharply with increasing percentage of O-alkyl C versus total aliphatic C (O-alkyl C/total aliphatic C) or with polar C/(alkyl+aromatic C) ratio of the biopolymers until their values reached 80% and 4, respectively, illustrating the effect of surrounding polar groups on reducing affinity for HOCs. Overall, the results of this study highlight the role of spatial arrangement of domains within biopolymers in sorption of HOCs, and point to sorbent properties, such as functionality, polarity and structure, jointly regulating the sorption of HOCs in biopolymers.  相似文献   

7.
脂肪酰基氨基酸对矿物润滑油生物降解性的影响研究   总被引:1,自引:1,他引:0  
通过生物降解试验研究了N-月桂酰基谷氨酸、N-月桂酰基甘氨酸、N-月桂酰基丙氨酸和N-油酰基甘氨酸4种脂肪酰基氨基酸对HVI 350矿物润滑油生物降解性的影响,采用高倍电子显微镜分析了生物降解过程中微生物数量和形态变化。结果表明,在矿物润滑油中添加少量脂肪酰基氨基酸后,矿物润滑油的生物降解性能明显改善,且生物降解过程中微生物数量增多、形态发生变化,这可能是脂肪酰基氨基酸增加了微生物的营养,且具有表面活性,有利于细胞的吸收,从而促进了矿物润滑油生物降解。  相似文献   

8.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

9.
Subfractionation, characterization and photooxidation of crude oil resins   总被引:1,自引:0,他引:1  
Resins of five crude oils were obtained using SARA fractionation. The maltenic fraction of Blend Arabian Light, was further separated into six polar fractions. These fractions which are the constituents of the resins were analysed by FTIR spectroscopy. They appeared to be more oxidized, more aliphatic and less aromatic than asphaltenes. Photooxidation of resins showed that they are easily oxidizable and much more influenced by photooxidation than asphaltenes. The principal effect of photooxidation are: (i) increase of carbonyl group amounts and particularly formation of carboxylic groups, (ii) oxidation of sulfoxide in sulfone group, (iii) oxidation of alkyl chains and of aromatic rings (quinone structures).  相似文献   

10.
Many pesticides are degraded to become chlorinated aromatic compounds in soils. Equilibrium distribution of chlorobenzene and chlorophenol compounds in soil-water systems of Yangmingshan loam, Pingcheng silty clay loam and Annei silty loam was studied with the integral distribution equilibrium equation involving the partial solubility parameters of the chemicals. If the adsorption of chemicals on soils is partitioning in soil organic matter surrounding the soil mineral particles, the absorption constant (Kd) of a chemical in soil-water system could be stated as the distribution coefficient (or partition constant, Koc) of the chemical in the two adjunct immiscible phases--water and soil organic matter. The distribution coefficient (Koc) of chemicals calculated from the integral distribution equilibrium equation agrees well with the experimental adsorption coefficient (Kd, or experimental Koc) of chemicals determined in this study, for all the three different types of soils in water according to multiple-regression analysis. Reference data of Karger or Tijssen are employed to estimate the Koc for both polar and non-polar chemicals. The integral distribution equilibrium equation can exactly describe the distribution behavior of nonionic compound of chlorobenzenes and chlorophenols in soil-water systems.  相似文献   

11.
进行了添加乙醇作为碳源强化油制气废水生物降解的研究,并利用GC/MS分析对油制气废水中芳烃类化合物的降解进行了初步研究。研究表明,共代谢基质乙醇的加入,可使菌种S-2、Y-3、XH-3、M-3对COD、氨氮、可萃取有机物等指标的去除率分别提高17.6%~25.6%、34.9%~42.8%、10.4%~14.2%;但在所采用的时间范围内,酚类化合物的去除率降低;芳烃类化合物的去除率提高15.4%~21.2%。除了维持无共代谢条件下对芳环数≤3的芳烃类化合物的良好降解能力外,对芳环数为4~6的化合物降解能力也有所提高。  相似文献   

12.
Using a data set for 39 base oils, formulated oil products and pure compounds it was demonstrated that there was a good positive relationship between biodegradation in CEC L-33-T-82 and mineralisation to CO2 in the modified Sturm test. A mathematical model was developed which described this correlation for most of the materials tested. One outlier from the model was di-iso tridecyl adipate (DITA), the well-degradable calibration oil for the CEC test. The measured mineralisation of DITA was much lower than that predicted by the model based on the compound's high biodegradability in the CEC test. A possible reason for this is given and the implications of this result discussed.  相似文献   

13.
Hamblen EL  Cronin MT  Schultz TW 《Chemosphere》2003,52(7):1173-1181
Suspected estrogen modulators include industrial organic chemicals (i.e., xenoestrogens), and have been shown to consist of alkylphenols, bisphenols, biphenylols, and some hydroxy-substituted polycyclic aromatic hydrocarbons. The most prominent structural feature identified to be important for estrogenic activity is a polar group capable of donating hydrogen bonds (i.e., hydroxyl) on an aromatic system. The present study was undertaken to explore the estrogenic activity and acute toxicity of chemicals containing a weaker hydrogen bond donor group on aromatic systems, i.e., the amino substituent. There is a great deal of chemical similarity between aromatic amines (anilines) and aromatic alcohols (phenols). The chemicals chosen for the current study contained an amino-substituted benzene ring with hydrophobic constituents varying in size and shape. Thus, 37 substituted aromatic amines were assayed for estrogenic activity EC50 and acute toxicity LC50 using the Saccharomyces cerevisiae recombinant yeast assay. While the EC50 of 17-beta-estradiol occurs at the 10(-10) range, the aniline with the greatest activity had an EC50 of 10(-6) M. Thus, anilines, in general, are capable only of very weak estrogenic activity in this assay. A comparison of estrogenic potency between the present group of anilines and a set of previously tested analogous phenols indicated that anilines are consistently less estrogenic than phenols. A comparison of hazard indices (EC50/LC50) of these chemicals revealed that, for the vast majority of anilines, the EC50 and LC50 were in the same order of magnitude. More specifically, estrogenic activity of para-substituted alkylanilines increases with alkyl group size up to 5 carbons in length, after which the acute toxicity of the larger alkyl-substituents precluded the ability of the compound to induce the estrogenic response.  相似文献   

14.
The effect of the alkyl chain of quaternary ammonium-based surfactants on their aquatic toxicity and aerobic biodegradability has been studied. Two families of monoalkylquats surfactants were selected: alkyl trimethyl ammonium and alkyl benzyl dimethyl ammonium halides. Acute toxicity tests on Daphnia magna and Photobacterium phosphoreum were carried out and EC50 values in the range of 0.1-1 mg/l were obtained for the two series of cationic surfactants. Although the substitution of a benzyl group for a methyl group increases the toxicity, an incremental difference in toxicity between homologs of different chain length were not observed. Biodegradability of the different homologs was determined not only in standard conditions but also in coastal water, both tests yielding similar results. An increase in the alkyl chain length or the substitution of a benzyl group for a methyl group reduces the biodegradation rate. The degradation of these compounds in coastal waters was associated with an increase in bacterioplankton density, suggesting that the degradation takes place because the compound is used as a growth substrate.  相似文献   

15.
Chen JM  Cheng ZW  Jiang YF  Zhang LL 《Chemosphere》2010,81(9):1053-1060
Photodegradation of gaseous α-pinene by a vacuum ultraviolet (VUV) in a spiral reactor was investigated under various gaseous reaction media and residence time, and their respective effects on types and biodegradability of the intermediates were studied. Analysis of carbon amounts showed that about 33% and 43% of total carbon were converted to soluble organic carbon in the air medium with a relative humidity (RH) of 35-40% at empty bed residence times (EBRTs) of 18 and 45 s. Based on the identified intermediates by GC/MS and IC, a photodegradation pathway was proposed by the combined roles of photolysis, OH. photooxidation and O? photooxidation. Biodegradability to active sludge, toxicity to Chlorella vulgaris and 96-well microplates showed that α-pinene could be largely converted to more biodegradable and less toxic compounds through photodegradation in the air reaction medium with a RH of 35-40% at an EBRT of 18s, in which the initial concentration was 600 mg m?3. Therefore, VUV photodegradation could be applied as an effective pre-treatment method for detoxification and biodegradability improvement under the optimized photodegradation conditions. Such results supported the potential use of VUV photodegradation to improve the removal capacity of conventional biological treatments for hydrophobic and poorly biodegradable compounds.  相似文献   

16.
Biodegradation of an amphoteric surfactant commonly used in personal care products, disodium cocoamphodiacetate (DSCADA), was evaluated. Results from respirometry experiments indicated that high levels of DSCADA (>216 mg/L) may be toxic to bacteria in wastewater treatment processes. Limited biodegradation, with 50% dissolved organic carbon (DOC) removal and 80% chemical oxygen demand removal was observed in batch assays, while complete removal of the parent compound, DSCADA, was noted. Oxygen biosensors were used to evaluate biodegradability of the metabolites present in the batch samples. Additional aerobic microbial activity was not detected in these samples, even with a residual DOC of approximately 45 mg/L. Results from this research indicate that biodegradability of DSCADA is limited and recalcitrant metabolites may be formed. Because DSCADA is a commonly used surfactant and is present in domestic and industrial wastewater, the associated risk posed by residual compounds should be carefully evaluated.  相似文献   

17.
Fingerprinting of hydrocarbon products requires high resolution differentiation of individual hydrocarbon compounds in any mixture. This requires the applications of various measuring techniques. In this paper, we have chosen the heavy hydrocarbons in fuels, lubricants and paving material as examples to discuss the methods for chemical characterization and differentiation. In the category most frequently termed "semi-volatile hydrocarbons" with boiling points from about 500°F to 1200°F or higher, there are several families of hydrocarbons, both natural and refined that are not easily distinguished by conventional EPA tests. Among the groups which we will use as examples are asphalts, hydraulic fluid, transmission oil, motor lubricating oils, heating oils, crude oil and coal. These hydrocarbon families are best studied using combined gas chromatography-mass spectrometry in full scan mode and characterizing various homologous series of hydrocarbons at known fragment ions. The hydrocarbon series providing the best information are: (1) N -alkanes; (2) iso-alkanes; (3) steranes; (4) terpanes; (5) polynuclear aromatic hydrocarbons; (6) aromatic steranes; and (7) specific polycyclic compounds.  相似文献   

18.
Wang J  Zhang X  Li G 《Chemosphere》2011,85(4):609-615
Effects of remediation technologies on polar compounds of crude oil in contaminated soils have not been well understood when compared to hydrocarbons. In this study, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize the changes in NSO polar compounds of crude oil and residual oil after long-term natural attenuation, biostimulation and subsequent ozonation following biostimulation of contaminated soils. N1 and O1 species, which were abundant in the crude oil, were selectively biodegraded, and species with higher double bond equivalent values and smaller carbon numbers appeared to be more resistant to microbial alteration. O2-O6 species were enriched by biodegradation and contained a large number of compounds with a high degree of unsaturation. Ozone could react with a variety of polar compounds in residual oil after biodegradation and showed high reactivity with polar species containing aromatic or multi-aliphatic rings, including the residual N1 and O1 species, naphthenic acids and unsaturated O3-O6 compounds. Fatty acids and O3-O8 species dominated by saturated alkyl compounds were resistant to ozonation or the primarily incomplete ozonation products. Principal component analysis of identified peaks in the FT-ICR MS spectra provided a comprehensive overview of the complex samples at the molecular level and the results were consistent with the detailed analysis. Taken together, these results showed the high complexity of polar compounds in residual oils after biodegradation or ozonation in contaminated soil and would contribute to a better understanding of bioremediation and ozonation processes.  相似文献   

19.
Particulate matter (PM) has become a major research issue receiving increasing attention because of its significant negative impact on human health. There are main indicators that next to the morphological characteristics of the particle, also the chemical composition plays an important role in the adverse health effects of PM. In this context, the rather polar organic fraction of PM is expected to play a major role, and advanced analytical techniques are developed to improve the knowledge on the molecular composition of this fraction. One component class that deserves major attention consists of the oxygenated polycyclic aromatic hydrocarbons (PAHs). Those compounds are considered to be among the key compounds in PM toxicity. This paper presents a comprehensive review focusing on the analysis, fate and behavior of oxygenated PAHs in the atmosphere. The first part of the paper briefly introduces (i) the main sources and atmospheric pathways of oxygenated PAHs, (ii) available physical–chemical properties and (iii) their health effects. The second and main part of this paper gives a thorough discussion on the entire analytical sequence necessary to identify and quantify oxygenated PAHs on atmospheric PM. Special attention is given to critical parameters and innovations related to (i) sampling, (ii) sample preparation including both extraction and clean-up, and (iii) separation and detection. Third, the state-of-the-art knowledge about the atmospheric occurrence of oxygenated PAHs is discussed, including an extended overview of reported concentrations presented as a function of sampling season and geographical location. A clear seasonal effect is observed with the median of the oxygenated PAHs concentrations during winter being a factor of 3–4 higher than during summer. However, the oxygenated PAH/parent PAH ratio is about 20 times higher during summer, indicating the importance of photochemical activity in the atmosphere.  相似文献   

20.
Fingerprinting of hydrocarbon products requires high resolution differentiation of individual hydrocarbon compounds in any mixture. This requires the applications of various measuring techniques. In this paper, we have chosen the heavy hydrocarbons in fuels, lubricants and paving material as examples to discuss the methods for chemical characterization and differentiation.In the category most frequently termed “semi-volatile hydrocarbons” with boiling points from about 500°F to 1200°F or higher, there are several families of hydrocarbons, both natural and refined that are not easily distinguished by conventional EPA tests. Among the groups which we will use as examples are asphalts, hydraulic fluid, transmission oil, motor lubricating oils, heating oils, crude oil and coal.These hydrocarbon families are best studied using combined gas chromatography-mass spectrometry in full scan mode and characterizing various homologous series of hydrocarbons at known fragment ions. The hydrocarbon series providing the best information are: (1)N -alkanes; (2) iso-alkanes; (3) steranes; (4) terpanes; (5) polynuclear aromatic hydrocarbons; (6) aromatic steranes; and (7) specific polycyclic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号