首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosensitizing perylenequinone toxin elsinochrome A (EA) is produced in culture by the bindweed biocontrol fungus Stagonospora convolvuli LA39 where it apparently plays a pathogenicity related role. We investigated the fate of EA with reference to its stability under different temperature and light conditions. EA remained stable when boiled in water at 100C for 2 h. Similarly, exposing EA to 3–27C in the dark for up to 16 weeks did not affect its stability either in dry or in aqueous form. However, results from irradiation experiments indicate that direct photolysis may be a significant degradation pathway for EA in the environment. EA either in dry form or dissolved in water was degraded by different irradiation wavelengths and intensities, with degradation plots fitting a first order rate kinetics. EA degraded faster if exposed in aqueous form, and at higher quantum flux density (μmol s−1 m−2). Sunlight was more effective in degrading EA than artificial white light and ultraviolet radiations (UV-A or UV-B). Exposing EA to natural sunlight, particularly, during the intense sunshine (1,420– 1,640 μmol s−1 m−2) days of 30 July to 5 August 2004 in Zurich caused the substance to degrade rapidly with half-life under such condition only 14 h. This implies that should EA gets into the environment, particularly on exposed environmental niches, such as on plant surfaces through biocontrol product spray, or released from shed diseased leaves, it may have no chance of accumulating to ‘level of concern’. Furthermore, a toxicity assay using Trichoderma atroviride P1 as biosensor showed that photo-degraded EA was not toxic, indicating that no stable toxic by-products were left.  相似文献   

2.
Epigeic earthworms (Oligochaeta) have been appeared as key organisms to convert organic waste resources into value-added products, i.e., vermicompost and worm biomass. The assessment of reproduction potential of composting earthworm may be beneficial for large-scale earthworm production. Although, the waste minimizing potential of Perionyx excavatus and Perionyx sansibaricus is well proved, but little information is available about their fecundity rate. In this study, the efforts have been made to explore the growth and reproduction biology of P. excavatus and P. sansibaricus, using cattle waste solid as culture substrate, under laboratory conditions. Earthworms were weighed weekly and number of cocoons produced per week assessed. Biomass productions, fecundity, maturation, natality all were significantly different between P. excavatus and P. sansibaricus. The highest mean individual biomass was 767.7 ± 18.4 mg and 612.6 ± 20.6 mg, respectively in P. sansibaricus and P. excavatus. However, the highest cocoon numbers occurred in P. excavatus (492.3 ± 13.6), significantly higher than P. sansibaricus (269.6 ± 17.1). Fecundity was slightly different in both species: 1.38 ± 0.77 cocoons adult worm−1 week−1 (P. excavatus) and 1.58 ± 0.74 cocoons adult worm−1 week−1 (P. sansibaricus). The hatchling success rate (%) was highest in P. excavatus. Overall natality (juveniles adult−1 week−1) was highest in P. sansibaricus (1.52) than P. excavatus (1.26), which suggests that P. sansibaricus may be a better candidate for rapid propagation of earthworms in cattle waste solid.  相似文献   

3.
The biological removal of phosphates was carried as a part of treatment strategy. Vetiveria zizanioides (L.) Nash belonging to the family Poaceae was used for biological removal of biostimulants. Vetiver reportedly has mycorrhizal association; besides having potential for removal of PO4 −3 also showed allelopathic affect on the microorganisms present in the water. In fact after a period of 96 h old roots of this plant have been found to have killing effects on the E. coli, Enterobacter spp. Pseudomonas spp. belonging to the family Enterobacteriaceae. The paper is opening a new face of study.  相似文献   

4.
Summary The biomass and productivity of a montane grassland of Garhwal Himalaya were estimated with the objectives to compare these values of the dominant exotic species, Eupatorium glandulosum HBK. (Asteraceae) with other species, and to compare the sites more dominated by this species with other study sites. The effect of dominance of this species on other species was undertaken because of its continuous spread in the grasslands of the Garhwal Himalaya causing replacement of some native grasses and economically important herbaceous plants. Out of six study sites, SW1, SW2, and NE1 were more dominated by Eupatorium glandulosum. Total net primary productivity (TNP) ranged from 1528.5 to 2163.4 g m−2 yr−1. Eupatorium glandulosum showed individual highest biomass on all the study sites, and the sites more dominated by this species showed higher values of primary productivity, thereby reducing the biomass and production of other species on these sites.  相似文献   

5.
ABSTRACT: A water-sampling apparatus used for the isolation and detection of Giardia cysts in water has been designed and tested. The sampling apparatus uses one of a variety of pumps or waterline pressure to move water through a filter. Two of the optional pumps are lightweight enough to make the apparatus portable and thus suitable for sampling in remote areas. This technique of sample processing produces good cyst recovery in much less time than is required with previously established methods. Giardia cysts are identified using direct immunofluorescence.  相似文献   

6.
The effect of spent engine oil on the height, leaf number, leaf area, stem girth, chlorophyll, and moisture contents of Corchorus olitorius grown on 0, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 2.0%, and 3.0% (v/w oil/soil) oil-contaminated soil was investigated. The engine oil at all concentrations delayed the germination of C. olitorius by 2 days (compared to control) and there was a general significant reduction in all the growth parameters in plants grown on contaminated soil compared to control plants. The highest leaf area of 26.8 cm2 was found in the control plant and least was found in the 0.6% soil (0.11 cm2) after 3 weeks while no values were recorded on the 0.8–3.0% engine-oil-contaminated soil after 5 weeks of experiment. The highest chlorophyll content was also found in the control plant (11.5 mg/l). This showed that spent engine oil has an adverse effect on the growth of C. olitorius plant.  相似文献   

7.
ABSTRACT: In a study to measure the efficacy of chioramines at inactivating Giardia cysts, the ability of cysts to excyst was measured after exposure to different concentrations of chloramines, for different times, and at different temperatures and pH. The chloramines were generated by mixing ammonium sulfate and sodium hypochlorate in water to approximate a 7:1 chlorine:ammonia ratio by weight. Times of 40, 80, 180, and 270 minutes; temperatures of 3, 10, and 18°C; target chioramine concentrations of 0.4, 1.4, 2.0, and 2.6 mg/L; and pH of 7.0 and 8.5 were the actual values tested. The combinations of these variables that were able to inactivate >99.8 percent of the cysts were a minimum chloramine concentration of 2.26 mg/L applied for 270 minutes at a water temperature of 10°C; and at 18°C, averaged minimum chloramine concentrations of 2.14 and 1.55 mg/L applied for 180 and 270 minutes, respectively. The minimum CT values corresponding to these combinations capable of >99.8 percent cyst inactivation, are 610 at 10°C and 385 at 18°C. Temperature was noted to exert a major effect on the ability of chloramines to inactivate cysts. Modifications of the methods used to generate chloramines may have an effect on the capacity of this disinfectant to inactivate cysts.  相似文献   

8.
Biodegradation of [A‐ring 14C] Estrone (E1), 17β‐estradiol (E2), and 17α‐ethinylestradiol (EE2) to 14CO2 was investigated under light and dark conditions in microcosms containing epilithon or sediment collected from Boulder Creek, Colorado. Mineralization of the estrogen A‐ring was observed in all sediment treatments, but not epilithon treatments. No difference in net mineralization between light and dark treatments was observed for 14C‐E2. Net mineralization of 14C‐E1 and 14C‐EE2 was enhanced in light treatments. Extents of 14CO2 accumulation and rates of mineralization were significantly greater for E2 than E1 under dark conditions, but were comparable under light conditions. These results indicate substantial differences in the uptake and metabolism of E1 and E2 in the environment and suggest biorecalcitrance of E1 relative to E2 in light‐limited environments. The extent of 14CO2 accumulation and rate of mineralization for EE2 in dark treatments were less than half of that observed for E2 and generally lower than for E1, consistent with previous reports of EE2 biorecalcitrance. However, 14CO2 accumulation and rates of mineralization were comparable for EE2, E2, and E1 under light conditions. These results indicate photoactivation and/or phototransformation/photodegradation processes can substantially enhance heterotrophic biodegradation of estrogens in sunlit environments and may play an important role in estrogen transport and attenuation.  相似文献   

9.
The vermicomposting ability of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen was evaluated by using three different types of organic substrates such as leaf litter of Polyalthia longifolia, Pennisetum typhoides cobs (pearl millet) and a weed, Rottboellia exaltata (whole plant except the roots) in combination with cowdung (1:1). Vermicomposting studies (120 days) conducted to optimize the number of worms required for efficient conversion based on the reduction of C/N ratio, percentage decomposition of organic substrates, total number and biomass of earthworms recovered from the vermibed substrates clearly showed that vermibeds with 4 kg of organic materials can hold about 60–80 L. mauritii and about 90–120 P. ceylanensis for efficient decomposition. The percentage decomposition of each organic substrate treated with different numbers of L. mauritii (20, 40, 60, 80 and 100 earthworms) and P. ceylanensis (30, 60, 90, 120 and 150) showed significant difference (P < 0.001) between numbers of worms introduced per vermibed but the difference between substrates was not significant within the treatments. Vermicomposting resulted in significant increase in electrical conductivity (28.54–49.82%), total nitrogen (43.96–90.83%), total phosphorus (27.42–68.10%) and total potassium (27.42–113.18%), whereas decrease in organic carbon (35.05–49.74%), C/N ratio (55.48–73.18%) and C/P ratio (50.46–66.90%) in different vermibeds introduced with L. mauritii and P. ceylanensis. Both the earthworm species can be used for vermicomposting different organic substrates; however, duration of vermicomposting with P. ceylanensis is not as much of L. mauritii. The use of L. mauritii for vermicomposting of other substrates has been well established by other workers also but standardization of P. ceylanensis, a locally available species, for vermicomposting of different organic substrates is a new finding and the species could be useful for vermiconversion of organic substrates under local conditions.  相似文献   

10.
Efforts have been made to convert the guar gum industrial waste into a value-added product, by employing a new earthworm species for vermicomposting e.g. Perionyx sansibaricus (Perrier) (Megascolecidae), under laboratory conditions. Industrial lignocellulosic waste was amended with other organic supplements (saw dust and cow dung); and three types of vermibeds were prepared: guar gum industrial waste + cow dung + saw dust in 40: 30: 30 ratio (T1), guar gum industrial waste + cow dung + saw dust in 60: 20: 20 ratio (T2,), and guar gum industrial waste + cow dung + saw dust in 75: 15: 10 ratio (T3). As compared to initial concentrations, vermicomposts exhibited a decrease in organic C content (5.0–11.3%) and C:N ratio (11.1–24.4%) and an increase in total N (18.4–22.8%), available P (39.7–92.4%), and exchangeable K (9.4–19.7%) contents, after 150 days of vermicomposting. A vermicomposting coefficient (VC) was used to compare of vermicomposting with the experimental control (composting). P. sansibaricus exhibited maximum value of mean individual live weight (742.8 ± 21.1 mg), biomass gain (442.94 ± 21.8 mg), growth rate (2.95 ± 0.15 mg day−1), cocoon numbers (96.0 ± 5.1) and reproduction rate (cocoons worm−1 day−1) (0.034 ± 0.001) in T2 treatment. In T3 maximum mortality (30.0 ± 4.01 %) in earthworm population was observed. Overall, T2 vermibed appeared as an ideal substrate to manage guar gum industrial waste effectively. Vermicomposting can be proposed as a low-input basis technology to convert industrial waste into value-added biofertilizer.  相似文献   

11.
The effects of aspect, altitude, and slope have been observed on the moist temperate forests of Abies pindrow Spach in the Garhwal Himalaya, India. Four aspects, namely, north-east, north-west, south-east and south-west, have been studied to understand the growth behaviour of A. pindrow at varying altitudes. The total basal cover was found to be highest (5099.6 cm2/100 m2) on the north-east facing slopes, and lowest (3092.7 cm2/100 m2) on the south-east facing slopes. The A. pindrow was found to be associated with Quercus semecarpifolia as a main companion species on all the faces, whereas, Lyonia ovalifolia, was associated only on the west facing slopes.  相似文献   

12.
In this work, Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites were prepared by the ultrasonic dispersion and liquid boiling method. In succession, they were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Acid red B as a model dye compound was degraded under solar light irradiation to evaluate the photocatalytic activities of the Er3+:YAlO3/ZnO–TiO2 and ZnO–TiO2 composites. We found that the photocatalytic activity of ZnO–TiO2 composite can be enhanced by adding an appropriate amount of Er3+:YAlO3. We reviewed influencing factors, such as Er3+:YAlO3 content, heat-treated temperature and heat-treated time on the photocatalytic activity of the Er3+:YAlO3/ZnO–TiO2 composites. In addition, the effects of solar light irradiation time, dye initial concentration, Er3+:YAlO3/ZnO–TiO2 amount and solution acidity on the photocatalytic degradation of acid red B dye in aqueous solution were investigated in detail. Simultaneously, the degradation and comparison of other dyes such as methyl orange (MO), rhodamine B (RM-B), azo fuchsine (AF), congo red (CG-R) and methyl blue (MB) were also reviewed. In addition, we attempted to explore both the principle of possible excitation of Er3+:YAlO3/ZnO–TiO2 under solar light irradiation and the mechanism of photocatalytic degradation.  相似文献   

13.
This paper communicates the effect of bioremediation on the performance of Okro plant (Abelmoshus esculentus) in a typical Niger Delta soil that has received 5% crude oil pollution level. Biodegrading bacteria such as Pseudomonas fluorescen, Acinetobacteria iwofii, Bacillus subtilus, Arthrobacter globiformis that was isolated from previously polluted soils was introduced into the samples. The treatment combinations are as follows (A) = control without crude oil; B = soil + crude oil, (C) = soil + crude oil + microbes, (D) = soil + crude oil + microbes, (E) = soil + crude oil + microbes + fertilizer (F) soil + microbes and (G) = soil + fertilizer. The treatment (E) gave the highest number of leaves, % crop emergence, plant biomass, microbial population and degradation of petroleum hydrocarbon compared to any of the treatments that had received crude oil. This suggested that fertilizer application does not only stimulate microbial growth but it provides the plant with more available nutrients required for plant growth.  相似文献   

14.
The microbiological impact of a detergent and soap industries effluent on Clarias gariepinus was assessed under laboratory conditions. The heterotrophic bacterial count obtained from fish surfaces ranged from 1.2 × 102−2.0 × 102cfu/ml amongst the control, while values of 4.8× 106−8.6 × 106 cfu/ml were obtained for the experimental fish exposed to the industrial effluent (0.025 ppm). The fungal count for the controls ranged from 1.2× 102−1.2 × 103 cfu/ml; while a range of 1.0 × 106−2.0 × 106 was obtained for the fish exposed to the industrial effluent. While twelve bacterial species were isolated from the fish exposed to the industrial effluent, only two were isolated from the parts of the control fish used in the study. The bacterial species are those in the genera Staphylococcus, Proteus, Streptococcus, Micrococcus, Bacillus, Pseudomonas, Serratia, Enterobacter, and Escherichia. The fungal isolates include Saccharomyces, Aspergillus, Rhodosporium, Candida, Alternaria, and Fusarium. The resistance of the bacterial isolates to the commonly used antibiotics showed that 100% were resistant to Augmentin, Amoxycillin and Cloxacillin, 85.71% to Tetracycline, 80.95% to Cotrimoxazole, 71.43% to Erythromycin, 33.33% to Chloramphenicol, and 28.57% to Gentamicin. Among the eight antibiotics tested, five patterns of multiple drug resistance were obtained, with the number of the antibiotics ranging from 4–8. The public health implications of these observations are discussed.  相似文献   

15.
Abstract: Mass (solute) transport in a stream or lake sediment bed has a significant effect on chemical mass balances and microbial activities in the sediment. A “1D vertical dispersion model” is a useful tool to analyze or model solute transfer between river or lake water and a sediment bed. Under a motionless water column, solute transfer into and within the sediment bed is by molecular diffusion. However, surface waves or bed forms create periodic pressure waves along the sediment/water interface, which in turn induce flows in the pores of the sediment bed. The enhancement of solute transport by these interstitial periodic flows in the pores has been incorporated in a 1D depth‐dependent “enhanced dispersion coefficient (DE).” Typically, DE diminishes exponentially with depth in the sediment bed. Relationships have been developed to estimate DE as a function of the characteristics of sediment (particle size, hydraulic conductivity, and porosity) and pressure waves (wave length and height). In this paper, we outline and illustrate the calculation of DE as well as the penetration depth (dp) of the flow effect. Sample applications to illustrate the computational procedure are provided for dissolved oxygen transfer into a stream gravel bed and release of phosphorus from a lake bed. The sensitivity of the results to input parameter values is illustrated, and compared with the errors obtained when interstitial flow is ignored. Maximum values of DE near the sediment surface can be on the order of 1 cm2/s in a stream gravel bed with standing waves, and 0.001 cm2/s in a fine sand lake bed under progressive surface waves, much larger than molecular diffusion coefficients.  相似文献   

16.
Macroinvertebrates were examined on an impounded valley marsh in Stonington, Connecticut, that has changed from aTypha-dominated system to one with typical salt-marsh vegetation during 13 years following the reintroduction of tidal exchange. Animal populations on this restored impounded marsh were evaluated by comparing them with populations on a nearby unimpounded valley marsh of roughly the same size. Populations of the high marsh snail,Melampus bidentatus Say, were quantitatively sampled along transects that extended from the water-marsh edge to the upland; those of the ribbed mussel,Geukensia demissa Dillwyn, were sampled in low marsh areas on transects along the banks of creeks and mosquito ditches. The occurrence of other marsh invertebrates also was documented, but their abundance was not measured. The mean density ofMelampus was 332±39.6 SE/m2 on the restored impounded marsh and 712±56.0 SE/m2 on the unimpounded marsh. However, since snails were larger on the restored impounded marsh, the difference in snail biomass was less pronounced than the difference in snail density. MeanMelampus biomass was 4.96±0.52 SE g dry wt/m2 on the restored impounded marsh and 6.96±0.52 SE g dry wt/m2 on the unimpounded marsh. On the two marshes, snail density and biomass varied in relation to plant cover and other factors. The density and biomass ofGeukensia at the edge of the marsh were comparable on the restored impounded and unimpounded marshes. Mean mussel densities ranged from 80 to 240/m2 and mean mussel biomass varied from 24.8–64.8 g dry wt/m2 in different low marsh areas. In contrast, below the impoundment dike, meanGeukensia density was 1100±96.4 SE/m2 and meanGeukensia biomass was 303.6±33.28 SE g dry wt/m2. A consideration of all available evidence leads to the conclusion that the impounded marsh is in an advanced phase of restoration.  相似文献   

17.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

18.
This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the domain Bacteria that represented approximately 60% to 90% of the total cell number, with Proteobacteria and Firmicutes as the most abundant phyla comprising up to 47% and 45% of the entire population, respectively. Both the total cell counts as well as the counts of the specific physiological groups revealed quantitative and qualitative changes after CO2 arrival. Our study revealed temporal outcompetition of sulphate-reducing bacteria by methanogenic archaea. In addition, an enhanced activity of the microbial population after five months CO2 storage indicated that the bacterial community was able to adapt to the extreme conditions of the deep biosphere and to the extreme changes of these atypical conditions.  相似文献   

19.
A pot-culture experiment was conducted in open-field conditions with highly cultivated locally transplanted (T) aman rice (Oryza sativa L.) named BR-22 in arsenic (As)-amended soil (0, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0 and 50.0 mg kg−1 As) of Bangladesh to see the effect of As on the growth, yield and metal uptake of rice. Arsenic was applied to soil in the form of sodium arsenate (Na2HAsO4). Arsenic affected the plant height, tiller and panicle numbers, grain and straw yield of T-aman rice significantly (P ≤ 0.05). The grain As uptake of T-aman rice was found to increase with increase of As in soil and a high grain As uptake was observed in the treatments of 30–50 mg kg−1 As-containing soil. These levels exceed the food hygiene concentration limit of 1.0 mg kg−1 As. However, the straw As uptake varied significantly (P ≤ 0.05) from a low concentration of As in soil (5 mg kg−1) and the highest uptake was noticed in 20 mg kg−1 As treatment.  相似文献   

20.
Various physical factors affecting the release rate of naturally occurring Cryptosporidium parvum oocysts and Giardia duodenalis cysts from dairy manure disks to sprinkled water were studied. The investigated factors included temperature (5 or 23 degrees C), manure type (calf manure, a 50% calf and 50% cow manure mixture, and a 10% calf and 90% cow manure mixture), and water application method (mist or drip) and flow rate. Effluent concentrations of manure and (oo)cysts were always several orders of magnitude below their initial concentration in the manure, decreased gradually, and exhibited persistent concentration tailing. Release of manure and (oo)cysts were found to be related by a constant factor, the so-called release efficiency of (oo)cysts. A previously developed (oo)cyst release model that included these release efficiencies provided a satisfactory simulation of the observed release. An effect of temperature on the release of manure and (oo)cysts was not apparent. The manure and (oo)cyst release rates from cow manure decreased faster than those from calf manure, and (oo)cyst release efficiencies from cow manure were higher than those from calf manure. In comparison with mist application, dripping water resulted in higher release rates of manure and (oo)cysts and in higher (oo)cyst release efficiencies due to the increased mechanical forces associated with droplet impact. Mist application at a higher flow rate resulted in faster release, but did not affect the (oo)cyst release efficiencies. The data and modeling approach described herein provide insight and an enhanced ability to describe the influence of physical factors on (oo)cyst release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号