首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste.  相似文献   

2.
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m3/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.  相似文献   

3.
Biopower can diversify energy supply and improve energy resiliency. Increases in biopower production from sustainable biomass can provide many economic and environmental benefits. For example, increasing biogas production through anaerobic digestion of food waste would increase the use of renewable fuels throughout California and add to its renewables portfolio. Although a biopower project will produce renewable energy, the process of producing bioenergy should harmonize with the goal of protecting public health. Meeting air emission requirements is paramount to the successful implementation of any biopower project. A case study was conducted by collecting field data from a wastewater treatment plant that employs anaerobic codigestion of fats, oils, and grease (FOG), food waste, and wastewater sludge, and also uses an internal combustion (IC) engine to generate biopower using the biogas. This research project generated scientific information on (a) quality and quantity of biogas from anaerobic codigestion of food waste and municipal wastewater sludge, (b) levels of contaminants in raw biogas that may affect beneficial uses of the biogas, (c) removal of the contaminants by the biogas conditioning systems, (d) emissions of NOx, SO2, CO, CO2, and methane, and (e) types and levels of air toxics present in the exhausts of the IC engine fueled by the biogas. The information is valuable to those who consider similar operations (i.e., co-digestion of food waste with municipal wastewater sludge and power generation using the produced biogas) and to support rulemaking decisions with regards to air quality issues for such applications.

Implications: Full-scale operation of anaerobic codigestion of food waste with municipal sludge is viable, but it is still new. There is a lack of readily available scientific information on the quality of raw biogas, as well as on potential emissions from power generation using this biogas. This research developed scientific information with regard to quality and quantity of biogas from anaerobic co-digestion of food waste and municipal wastewater sludge, as well as impacts on air quality from biopower generation using this biogas. The need and performance of conditioning/pretreatment systems for biopower generation were also assessed.  相似文献   


4.
金属铁铝对混凝强化初沉污泥中温厌氧消化的影响   总被引:1,自引:0,他引:1  
选取FeCl3和AlCl3·6H2O作为混凝剂对城市污水进行一级强化混凝处理,降低二级生物处理的进水负荷,减少污水生物处理系统的能量消耗。主要研究混凝过程投加的金属盐对一级强化混凝产生的初沉污泥中温厌氧消化的影响。和剩余污泥相比,初沉污泥更适合厌氧消化处理,污泥降解性能和产气性能更高。当采用城市污水一级强化混凝处理时,污泥中的金属和金属盐水解引起的pH降低,使混凝强化初沉污泥的厌氧消化受到一定抑制。随着污泥中铝含量的降低和铁含量的增加,厌氧消化的COD降解率和挥发性固体(VS)降解率逐渐升高,生物气产量逐渐增大,产气速率加快。当混凝强化初沉污泥只含有铁时(铁含量为10.16 mg/L),混凝强化初沉污泥厌氧消化效果最好,产气稳定,而且产气速率高,生物气产量为237 mL,生物气甲烷含量为55.5%,降解单位VS产气量为0.80 L/g,均高于其他含铝的混凝强化初沉污泥。污泥中的铁对初沉污泥厌氧消化的抑制作用远远小于铝的作用,说明铁盐适合用于城市污水的一级强化混凝处理。  相似文献   

5.
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (~10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.  相似文献   

6.
在UASB反应器中接种好氧污泥培养厌氧颗粒污泥进行启动,研究不同HRT对老龄(13年)垃圾渗滤液对处理效果的影响情况。通过保持进水COD浓度不变、逐步缩短HRT从而提高容积负荷到40 g COD/(L.d)的方法,可以培育出直径为1~3 mm颗粒污泥,最终产气量稳定在100 L/d,甲烷含量在60%~70%之间,COD去除率保持在90%左右,污泥层最底部MLSS为81 g/L。逐步提高HRT依次为6、12、24、48和72 h考察其对处理效果的影响,当HRT为24 h时处理效果最好,COD去除率最高达到35%左右。  相似文献   

7.
8.
Simultaneous sludge reduction and malodor abatement in humus soil cooperated an anaerobic/anoxic/oxic (A2O) wastewater treatment were investigated in this study. The HSR-A2O was composed of a humus soil reactor (HSR) and a conventional A2O (designated as C-A2O).The results showed that adding HSR did not deteriorate the chemical oxygen demand (COD) removal, while total phosphorus (TP) removal efficiency in HSR-A2O was improved by 18 % in comparison with that in the C-A2O. Both processes had good performance on total nitrogen (TN) removal, and there was no significant difference between them (76.8 and 77.1 %, respectively). However, NH4 +–N and NO3 ?–N were reduced to 0.3 and 6.7 mg/L in HSR-A2O compared to 1.5 and 4.5 mg/L. Moreover, adding HSR induced the sludge reduction, and the sludge production rate was lower than that in the C-A2O. The observed sludge yield was estimated to be 0.32 kg MLSS/day in HSR-A2O, which represent a 33.5 % reduction compared to a C-A2O process. Activated sludge underwent humification and produced more humic acid in HSR-A2O, which is beneficial to sludge reduction. Odor abatement was achieved in HSR-A2O, ammonium (NH3), and sulfuretted hydrogen (H2S) emission decreased from 1.34 and 1.33 to 0.06 mg/m3, 0.025 mg/m3 in anaerobic area, with the corresponding reduction efficiency of 95.5 and 98.1 %. Microbial community analysis revealed that the relevant microorganism enrichment explained the reduction effect of humus soil on NH3 and H2S emission. The whole study demonstrated that humus soil enhanced odor abatement and sludge reduction in situ.  相似文献   

9.
UASB处理硫酸盐有机废水的启动   总被引:1,自引:0,他引:1  
为了考察上流式厌氧污泥床反应器(UASB)处理含硫酸盐有机废水的特性,采用有效容积为10 L的UASB,研究了启动运行过程中COD和SO2-4降解情况、出水VFA和pH值、产气量及颗粒污泥比产甲烷活性(SMA)变化状况。结果表明,接种厌氧颗粒污泥,保持进水COD为1 500 mg/L,SO2-4浓度为100 mg/L,将HRT由24 h缩短至12 h以提高负荷,经历55 d成功启动了UASB反应器;当HRT为12 h,进水COD和SO2-4负荷为3.0 kg/(m3·d)和0.20 kg/(m3·d),COD和SO2-4的去除率分别达到80%和89%,出水VFA为3 mmol/L,产气量达9.5 L/d,颗粒污泥的SMA为86.4 mL/(g VSS·d)。  相似文献   

10.
The goal of the proposed project was to develop an anaerobic fermentation process that converts negative-value organic wastes into hydrogen-rich gas in a continuous-flow reactor under different operating conditions, such as hydraulic retention time (HRT), heat treatment, pH, and substrates. A series of batch tests were also conducted in parallel to the continuous study to evaluate the hydrogen conversion efficiency of two different organic substrates, namely sucrose and starch. A heat shock (at 90 degrees C for 15 minutes) was applied to the sludge in an external heating chamber known as a sludge activation chamber, as a method to impose a selection pressure to eliminate non-spore-forming, hydrogen-consuming bacteria and to activate spore germination. The experimental results showed that the heat activation of biomass enhanced hydrogen production by selecting for hydrogen-producing, spore-forming bacteria. The batch feeding at a shorter HRT of 20 hours (or higher organic loading rate) favored hydrogen production, whereas, at a longer HRT of 30 hours, methane was detected in the gas phase. The major organic acids of hydrogen fermentation were acetate, butyrate, and propionate. Up to 23.1% of influent chemical oxygen demand was consumed in biomass synthesis. Batch tests showed that the hydrogen-production potential of starch was lower than sucrose, and better conversion efficiency from starch was obtained at a lower pH of 4.5. However, addition of sucrose to starch improved the overall hydrogen-production potential and hydrogen-production rate. This study showed that sustainable biohydrogen production from carbohydrate-rich substrates is possible through heat activation of settled sludge.  相似文献   

11.
The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban–rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban–rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.  相似文献   

12.
In the present study, fate of carbofuran in anaerobic environments and the adverse effects of carbofuran on conventional anaerobic systems were evaluated. Carbofuran degradation studies were carried out in batch reactors with varying carbofuran concentrations of 0 to 270.73 mg/L corresponding to a sludge-loading rate (SLR) of 2.12 x 10(-6) to 3.83 x 10(-3) g of carbofuran/g of volatile suspended solids (VSS)/d. Carbofuran concentration was reduced to undetectable levels at the end of 8 and 13 days in the batch reactors operated with a SLR of 2.12 x 10(-6) and 3.33 x 10(-5) g of carbofuran/g of VSS/d, respectively. Performances of two anaerobic reactors i.e. upflow anaerobic sludge blanket (UASB) and modified UASB (with tube settlers) were evaluated in the presence and absence of carbofuran using synthetic wastewater. In the absence of carbofuran, the soluble chemical oxygen demand (COD) removal efficiency in the conventional UASB reactor at 8 h and 6 h hydraulic retention time (HRT) was nearly 88% and 76%, respectively, whereas in modified UASB reactor it was increased to 90% at 8 h HRT and 78% at 6 h HRT. When 28 mg/L (SLR of 1.19 x 10(-2) g of carbofuran/g of VSS/d) of carbofuran was introduced in the reactors, the COD removal efficiency was reduced to 41% and 44% in conventional and modified UASB reactors respectively. However, the reactor could maintain around 80% COD removal efficiency at a carbofuran concentration of 7.84 mg/L (SLR of 3.64 x 10(-3) g of carbofuran/g of VSS/d). The reactor efficiency was also measured in terms of specific acetoclastic methanogenic activity (SMA). The toxic effect of carbofuran was reversible to a certain extent. Carbofuran removal efficiency in the conventional UASB reactor at carbofuran concentrations of 7, 13 and 28 mg/L were 40 +/- 3%, 27 +/- 3%, and 11 +/- 3%, respectively. In modified UASB reactor, carbofuran removal efficiency was almost uniform at 7 and 13 mg/L but it was reduced nearly by 56% at 28 mg/L. The major metabolite of carbofuran i.e. 3-keto carbofuran was found in all the reactors.  相似文献   

13.
初始pH值对提油后藻渣发酵制氢的影响   总被引:2,自引:1,他引:1  
提油后藻渣的利用和处理对于微藻生物柴油产业的发展具有重要意义.采用批次实验研究了初始pH值(pH值范围为5~9)对提油后藻渣发酵产氢的影响.研究结果表明,提高初始pH值引起累积产氢量和氢气产量逐渐下降.初始pH值从5增加到6.5引起氢气产生速率逐渐增加,而初始pH值从6.5增加到9时,氢气产生速率则逐渐下降.在pH 5...  相似文献   

14.
The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.  相似文献   

15.
Kinetics of H2 production from liquid swine manure supplemented with glucose by mixed anaerobic cultures was investigated using batch experiments under four different pH conditions (4.4, 5.0, 5.6, and uncontrolled). The temperature for the experiments was controlled at 37 ± 1°C and the length of experiments varied between 50 and 120 hours, depending upon the time needed for completion of each individual experiment. The modified Gompertz model was evaluated for its suitability for describing the H2 production potential, H2 production rate, and substrate consumption rate for all the experiments. The results showed that the Gompertz model could adequately fit the experimental results. The effect of pH was significant on all kinetic parameters for H2 production including yield, production rate and lag time, and the substrate utilization rate. The optimal pH was found to be 5.0, at which a maximum H2 production rate (0.64 L H2/h) was obtained, and deviation from the optimal pH could result in substantial reductions in H2 production rate (0.32 L H2/h for pH 4.0 and 0.43 L H2/h for pH 5.6). The results also showed that if pH was not controlled for the batch fermentation process, the substrate utilization efficiency could steeply decrease from 98.8% to 33.7%.  相似文献   

16.
Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3–10 days and organic loading rates (OLR) at 0.66–7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93 %, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88 % protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 1012 m kg?1 at 10 days of HRT, which was equivalent to 97 % decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.  相似文献   

17.

Purpose

Lack of focus on the treatment of wastewaters bearing potentially hazardous pollutants like 1,1,2 trichloroethane and 1,1,2,2 tetrachloroethane in anaerobic reactors has provided an impetus to undertake this study. The objective of this exercise was to quantify the behavior of upflow anaerobic sludge blanket reactors and predict their performance based on the overall organic substrate removal.

Methods

The reactors (wastewater-bearing TCA (R2), and wastewater-bearing TeCA (R3)) were operated at different hydraulic retention times (HRTs), i.e., 36, 30, 24, 18, and 12?h corresponding to food-to-mass ratios varying in the range of 0.2?C0.7?mg chemical oxygen demand (COD) mg?1 volatile suspended solids day?1. The process kinetics of substrate utilization was evaluated on the basis of experimental results, by applying three mathematical models namely first order, Grau second order, and Michaelis-Menten type kinetics.

Results

The results showed that the lowering of HRT below 24?h resulted in reduced COD removal efficiencies and higher effluent pollutant concentrations in the reactors. The Grau second-order model was successfully applied to obtain the substrate utilization kinetics with high value of R 2 (>0.95). The Grau second-order substrate removal constant (K 2) was calculated as 1.12 and 7.53?day?1 for reactors R2 and R3, respectively.

Conclusion

This study demonstrated the suitability of Grau second-order kinetic model over other models, for predicting the performance of reactors R2 and R3, in treating wastewaters containing chlorinated ethanes under different organic and hydraulic loading conditions.  相似文献   

18.
Natural steroidal estrogens, such as 17 β-estradiol (E2), as well as antimicrobials such as doxycycline and norfloxacin, are excreted by humans and hence detected in sewage sludge and biosolid. The disposal of human waste products on agricultural land results in estrogens and antibiotics being detected as mixtures in soils. The objective of this study was to examine microbial respiration and E2 mineralization in sewage sludge, biosolid, and soil in the presence and the absence of doxycycline and norfloxacin. The antimicrobials were applied to the media either alone or in combination at total rates of 4 and 40 mg kg?1, with the 4 mg kg?1 rate being an environmentally relevant concentration. The calculated time that half of the applied E2 was mineralized ranged from 294 to 418 days in sewage sludge, from 721 to 869 days in soil, and from 2,258 to 14,146 days in biosolid. E2 mineralization followed first-order and the presence of antimicrobials had no significant effect on mineralization half-lives, except for some antimicrobial applications to the human waste products. At 189 day, total E2 mineralization was significantly greater in sewage sludge (38 ±0.7%) > soil (23 ±0.7%) > biosolid (3 ±0.7%), while total respiration was significantly greater in biosolid (1,258 mg CO2) > sewage sludge (253 mg CO2) ≥ soil (131 mg CO2). Strong sorption of E2 to the organic fraction in biosolid may have resulted in reduced E2 mineralization despite the high microbial activity in this media. Total E2 mineralization at 189 day was not significantly influenced by the presence of doxycycline and/or norfloxacin in the media. Antimicrobial additions also did not significantly influence total respiration in media, except that total CO2 respiration at 189 day was significantly greater for biosolid with 40 mg kg?1 doxycycline added, relative to biosolid without antimicrobials. We conclude that it is unlikely for doxycycline and norfloxacin, or their mixtures, to have a significant effect on E2 mineralization in human waste products and soil. However, the potential for E2 to be persistent in biosolids, with and without the presence of antimicrobials, is posing a challenge for biosolid disposal to agricultural lands.  相似文献   

19.
pH值对污泥发酵产酸的影响   总被引:1,自引:0,他引:1  
利用剩余污泥厌氧发酵产生挥发性脂肪酸,可作为污水脱氮除磷的有机碳源,而pH值是发酵产酸过程中重要的控制参数.研究了不同pH值条件下剩余污泥厌氧发酵产酸过程中各参数变化规律,探索pH值对其过程的影响及其分析.结果表明,碱性条件有利于污泥发酵产酸过程,实验最佳条件是控制反应初始pH值为10.0,仅8d发酵挥发性脂肪酸浓度就达到8.90 mmol/L.此外,污泥在发酵过程中,酸性条件下NH4+-N和PO43--P的释放量均大于碱性条件.  相似文献   

20.
Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p < 0.01, two-tailed) was found between the amounts of landfilled waste and the ambient temperature, which can be attributed to food consumption and kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m3 LFG/ton waste landfilled and 0.08 MWhr/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m3/MWhr.

Implications: The paper will be useful for local authorities who need to manage municipal waste by using landfills. The paper will also be useful for investors who want to evaluate the energy production potential of municipal wastes and the factors affecting the energy generation process mostly for economical purposes. Landfills can be regarded as energy sources and their potentials need to be investigated. The paper will also be useful for policymakers dealing with energy issues. The paper contains information on real practical data such as engine working hours, equation to estimate the necessary power for a given amount of landfilled waste, and son on.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号