首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrialized countries agreed on a reduction of greenhouse gas emissions under the Kyoto Protocol. Many countries elected forest management activities and the resulting net balance of carbon emissions and removals of non-CO2 greenhouse gases by forest management in their climate change mitigation measures. In this paper a generic dynamic forestry model (FORMICA) is presented. It has an empirical basis. Several modules trace C pools relevant for the Kyoto Protocol and beyond: biomass, litter, deadwood and soil, and harvested wood products. The model also accounts for the substitution of fossil fuels by wood products and bioenergy.  相似文献   

2.
Guoliang Liu  Shijie Han 《Ecological modelling》2009,220(13-14):1719-1723
In their efforts to deal with global climate change, scientists and governments have given much attention to the carbon emissions associated with fossil fuels and to strategies for reducing their use. While it is very important to burn less fossil fuel and to employ alternative energy sources, other carbon-reduction options must also be considered. Given that forests comprise a large portion of the global landbase and that they play a very significant role in the global carbon cycle, it is logical to examine how forest management practices could effect reductions in carbon emissions. Many papers that discuss forest carbon sinks or sources refer only to the short term (<20 years). This paper focuses on the sustainable carbon storage contributions of a forest over the long term. This paper explains that long-term carbon storage and reduced carbon fluctuation can be achieved by a combination of improved forest management and efficient transfer of carbon into wood products. Here we show how three different forest management scenarios affect the overall carbon storage capacity of forest and wood products combined over the long term. We used a timber supply model and scenario analysis to predict forest carbon and other resource conditions over time in the Prince George Forest District, a 3.4-million-ha landbase in northern British Columbia. We found that the high-harvest scenario stores 3% more carbon than the low-harvest scenario and 27% (120 million tonnes) more carbon than the no-harvest scenario even though only 1.2-million ha is in timber harvesting landbase. Our results tell us that forest management practices that maintain and increase forest area, reduce natural disturbances in the forest, improve forest conditions, and ensure the appropriate and timely transfer of carbon into wood products lead to increasing overall carbon storage, thereby reducing carbon in the atmosphere.  相似文献   

3.

Energy derived from fossil fuels contributes significantly to global climate change, accounting for more than 75% of global greenhouse gas emissions and approximately 90% of all carbon dioxide emissions. Alternative energy from renewable sources must be utilized to decarbonize the energy sector. However, the adverse effects of climate change, such as increasing temperatures, extreme winds, rising sea levels, and decreased precipitation, may impact renewable energies. Here we review renewable energies with a focus on costs, the impact of climate on renewable energies, the impact of renewable energies on the environment, economy, and on decarbonization in different countries. We focus on solar, wind, biomass, hydropower, and geothermal energy. We observe that the price of solar photovoltaic energy has declined from $0.417 in 2010 to $0.048/kilowatt-hour in 2021. Similarly, prices have declined by 68% for onshore wind, 60% for offshore wind, 68% for concentrated solar power, and 14% for biomass energy. Wind energy and hydropower production could decrease by as much as 40% in some regions due to climate change, whereas solar energy appears the least impacted energy source. Climate change can also modify biomass productivity, growth, chemical composition, and soil microbial communities. Hydroelectric power plants are the most damaging to the environment; and solar photovoltaics must be carefully installed to reduce their impact. Wind turbines and biomass power plants have a minimal environmental impact; therefore, they should be implemented extensively. Renewable energy sources could decarbonize 90% of the electricity industry by 2050, drastically reducing carbon emissions, and contributing to climate change mitigation. By establishing the zero carbon emission decarbonization concept, the future of renewable energy is promising, with the potential to replace fossil fuel-derived energy and limit global temperature rise to 1.5 °C by 2050.

  相似文献   

4.
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for monitoring C storage and fire management to minimize C loss. In this study, we used projections of 21st century area burned to explore the consequences of changes in fire regimes on C dynamics in forests of Washington State. We used a novel empirical approach that takes advantage of chronosequences of C pools and fluxes and statistical properties of fire regimes to explore the effects of shifting age class distributions on C dynamics. Forests of the western Cascades are projected to be more sensitive to climate-driven increases in fire, and thus projected changes in C dynamics, than forests of the eastern Cascades. In the western Cascades, mean live biomass C is projected to decrease by 24-37%, and coarse woody debris (CWD) biomass C by 15-25% for the 2040s. Loss of live biomass C is projected to be lower for forests of the eastern Cascades and Okanogan Highlands (17-26%), and CWD biomass is projected to increase. Landscape mean net primary productivity is projected to increase in wet low-elevation forests of the western Cascades, but decrease elsewhere. These forests, and moist forests of the Okanogan Highlands, are projected to have the greatest percentage increases in consumption of live biomass. Percentage increases in consumption of CWD biomass are greater than 50% for all regions and up to four times greater than increases in consumption of live biomass. Carbon sequestration in PNW forests will be highly sensitive to increases in fire, suggesting a cautious approach to managing these forests for C sequestration to mitigate anthropogenic CO2 emissions.  相似文献   

5.
Abstract: The growing demand for biofuels is promoting the expansion of a number of agricultural commodities, including oil palm (Elaeis guineensis). Oil‐palm plantations cover over 13 million ha, primarily in Southeast Asia, where they have directly or indirectly replaced tropical rainforest. We explored the impact of the spread of oil‐palm plantations on greenhouse gas emission and biodiversity. We assessed changes in carbon stocks with changing land use and compared this with the amount of fossil‐fuel carbon emission avoided through its replacement by biofuel carbon. We estimated it would take between 75 and 93 years for the carbon emissions saved through use of biofuel to compensate for the carbon lost through forest conversion, depending on how the forest was cleared. If the original habitat was peatland, carbon balance would take more than 600 years. Conversely, planting oil palms on degraded grassland would lead to a net removal of carbon within 10 years. These estimates have associated uncertainty, but their magnitude and relative proportions seem credible. We carried out a meta‐analysis of published faunal studies that compared forest with oil palm. We found that plantations supported species‐poor communities containing few forest species. Because no published data on flora were available, we present results from our sampling of plants in oil palm and forest plots in Indonesia. Although the species richness of pteridophytes was higher in plantations, they held few forest species. Trees, lianas, epiphytic orchids, and indigenous palms were wholly absent from oil‐palm plantations. The majority of individual plants and animals in oil‐palm plantations belonged to a small number of generalist species of low conservation concern. As countries strive to meet obligations to reduce carbon emissions under one international agreement (Kyoto Protocol), they may not only fail to meet their obligations under another (Convention on Biological Diversity) but may actually hasten global climate change. Reducing deforestation is likely to represent a more effective climate‐change mitigation strategy than converting forest for biofuel production, and it may help nations meet their international commitments to reduce biodiversity loss.  相似文献   

6.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future.  相似文献   

7.
Global warming can be curbed by pricing carbon emissions and thus substituting fossil fuel with renewable energy consumption. Breakthrough technologies (e.g., fusion energy) can reduce the cost of such policies. However, the chance of such a technology coming to market depends on investment. We model breakthroughs as an irreversible tipping point in a multi-country world, with different degrees of international cooperation. We show that international spill-over effects of R&D in carbon-free technologies lead to double free-riding, strategic over-pollution and underinvestment in green R&D, thus making climate change mitigation more difficult. We also show how the demand structure determines whether carbon pricing and R&D policies are substitutes or complements.  相似文献   

8.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

9.
Carbon offsets are a frequently discussed tool for reducing the costs of an emissions reduction policy. However, offsets have a basic problem stemming from asymmetric information. Sellers of offsets have private information about their opportunity costs, leading to concerns about whether offsets are additional. Non-additional offsets can undermine a cap-and-trade program or, if the government purchases them directly, result in enormous government expenditures. We analyze contracts for carbon sequestration in forests that mitigate the asymmetric information problem. Landowners are offered a menu of two-part contracts that induces them to reveal their type. Under this scheme, the government is able to identify ex post how much additional forest each landowner contributes and minimize ex ante its expenditures on carbon sequestration. To explore the performance of the contracting scheme, we conduct a national-scale simulation using an econometric model of land-use change. The results indicate that for an increase in forest area of 61 million acres, government expenditures are $5.3 billion lower under the contracting approach compared to a uniform subsidy offered to all landowners. This compares to an increase in private opportunity costs of just $110 million dollars under the contracts. Thus, the contracting scheme is preferable from society's perspective.  相似文献   

10.
Offset schemes help avoid or revert habitat loss through protection of existing habitat (avoided deforestation), through the restoration of degraded areas (natural regrowth), or both. The spatial scale of an offset scheme may influence which of these 2 outcomes is favored and is an important aspect of the scheme's design. However, how spatial scale influences the trade-offs between the preservation of existing habitat and restoration of degraded areas is poorly understood. We used the largest forest offset scheme in the world, which is part of the Brazilian Forest Code, to explore how implementation at different spatial scales may affect the outcome in terms of the area of avoided deforestation and area of regrowth. We employed a numerical simulation of trade between buyers (i.e., those who need to offset past deforestation) and sellers (i.e., landowners with exceeding native vegetation) in the Brazilian Amazon to estimate potential avoided deforestation and regrowth at different spatial scales of implementation. Allowing offsets over large spatial scales led to an area of avoided deforestation 12 times greater than regrowth, whereas restricting offsets to small spatial scales led to an area of regrowth twice as large as avoided deforestation. The greatest total area (avoided deforestation and regrowth combined) was conserved when the spatial scale of the scheme was small, especially in locations that were highly deforested. To maximize conservation gains from avoided deforestation and regrowth, the design of the Brazilian forest-offset scheme should focus on restricting the spatial scale in which offsets occur. Such a strategy could help ensure conservation benefits are localized and promote the recovery of degraded areas in the most threatened forest landscapes.  相似文献   

11.
The possibility of encouraging the growth of forests as a means of sequestering carbon dioxide has received considerable attention, partly because of evidence that this can be a relatively inexpensive means of combating climate change. But how sensitive are such estimates to specific conditions? We examine the sensitivity of carbon sequestration costs to changes in critical factors, including the nature of management and deforestation regimes, silvicultural species, relative prices, and discount rates.  相似文献   

12.
In Life Cycle Assessment (LCA), carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is CO2 flux neutral, i.e. the quantity of CO2 released approximately equals the amount of CO2 sequestered in biomass. This convention is a plausible assumption for fast growing biomass species, but is inappropriate for slower growing biomass, like forests. In this case, the climate impact from biomass combustion can be potentially underestimated if CO2 emissions are ignored, or overestimated, if biogenic CO2 is considered equal to anthropogenic CO2. The estimation of the effective climate impact should take into account how the CO2 fluxes are distributed over time: the emission of CO2 from bioenergy approximately occurs at a single point in time, while the absorption by the new trees is spread over several decades. Our research target is to include this dynamic time dimension in unit-based impact analysis, using a boreal forest stand as case study. The boreal forest growth is modelled with an appropriate function, and is investigated under different forestry regimes (affecting the growth rate and the year of harvest). Specific atmospheric decay functions for biomass-derived CO2 are then elaborated for selected combinations of forest management options. The contribution to global warming is finally quantified using the GWPbio index as climate metric. Results estimates the effects of these practices on the characterization factor used for the global warming potential of CO2 from bioenergy, and point out the key role played by the selected time horizon.  相似文献   

13.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

14.
郭月峰  姚云峰  秦富仓  祁伟 《生态环境》2013,(10):1665-1670
选择燕山典型流域6个林龄序列的小叶杨(Populus simonii)和5个林龄序列的山杏(Prunus sibirica)主要造林树种为研究对象,利用时间替代空间样地测量法量化退牧还林后生物量碳储量、凋落物碳储量和土壤碳储量及生态系统碳储量的变化规律,同时以各组成碳库-林龄序列中的最大碳储量之和作为生态系统饱和碳储量,以未退牧的天然草地生态系统碳储量作为初始植被类型的碳储量,分析总结了退牧还林对生态系统碳储量和碳循环的影响。结果表明,退牧还林后生态系统的生物量碳储量、凋落物碳储量基本随退牧年限的增加而增加,土壤碳储量随退牧年限的增加呈现先减小后增加的趋势。在没有人为干扰的情况下,9、15、18、22及29 a生小叶杨林的生态系统碳储量分别为7147.45、7461.67、7509.895、8468.375及8247.85 g·m^-2,9、15、18、22及26 a生山杏林的生态系统碳储量分别为6695.44、6700.82、8011.86、8001.92及7981.92 g·m^-2;9、15、18、22、29及36 a生小叶杨林的生态系统固碳潜力分别为757.08、1071.3、1119.53、2078.01、1857.48及1312.21 g·m^-2,9、15、18、22及26 a生山杏林的生态系统固碳潜力分别为310.45、1621.49、1611.55、1591.55及757.08 g·m^-2。长期来看,研究区退牧还林对提高生态系统碳汇能力是可观的、积极的。研究结果对提高造林对碳汇影响的估测能力提供数据支持,也为政府参与国际全球气候变化的谈判提供一个很好的案例研究和科学根据。  相似文献   

15.
Abstract: There is a growing recognition that conservation often entails trade‐offs. A focus on trade‐offs can open the way to more complete consideration of the variety of positive and negative effects associated with conservation initiatives. In analyzing and working through conservation trade‐offs, however, it is important to embrace the complexities inherent in the social context of conservation. In particular, it is important to recognize that the consequences of conservation activities are experienced, perceived, and understood differently from different perspectives, and that these perspectives are embedded in social systems and preexisting power relations. We illustrate the role of trade‐offs in conservation and the complexities involved in understanding them with recent debates surrounding REDD (Reducing Emissions from Deforestation and Degradation), a global conservation policy designed to create incentives to reduce tropical deforestation. Often portrayed in terms of the multiple benefits it may provide: poverty alleviation, biodiversity conservation, and climate‐change mitigation; REDD may involve substantial trade‐offs. The gains of REDD may be associated with a reduction in incentives for industrialized countries to decrease carbon emissions; relocation of deforestation to places unaffected by REDD; increased inequality in places where people who make their livelihood from forests have insecure land tenure; loss of biological and cultural diversity that does not directly align with REDD measurement schemes; and erosion of community‐based means of protecting forests. We believe it is important to acknowledge the potential trade‐offs involved in conservation initiatives such as REDD and to examine these trade‐offs in an open and integrative way that includes a variety of tools, methods, and points of view.  相似文献   

16.
Beyond Kyoto: Forest Management in a Time of Rapid Climate Change   总被引:9,自引:0,他引:9  
Abstract: Policies to reduce global warming by offering credits for carbon sequestration have neglected the effects of forest management on biodiversity. I review properties of forest ecosystems and management options for enhancing the resistance and resilience of forests to climate change. Although forests, as a class, have proved resilient to past changes in climate, today's fragmented and degraded forests are more vulnerable. Adaptation of species to climate change can occur through phenotypic plasticity, evolution, or migration to suitable sites, with the latter probably the most common response in the past. Among the land-use and management practices likely to maintain forest biodiversity and ecological functions during climate change are (1) representing forest types across environmental gradients in reserves; (2) protecting climatic refugia at multiple scales; (3) protecting primary forests; (4) avoiding fragmentation and providing connectivity, especially parallel to climatic gradients; (5) providing buffer zones for adjustment of reserve boundaries; (6) practicing low-intensity forestry and preventing conversion of natural forests to plantations; ( 7) maintaining natural fire regimes; (8) maintaining diverse gene pools; and (9) identifying and protecting functional groups and keystone species. Good forest management in a time of rapidly changing climate differs little from good forest management under more static conditions, but there is increased emphasis on protecting climatic refugia and providing connectivity.  相似文献   

17.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inputs such as fertilizer) and so does converting the harvested product to usable fuels (feedstock conversion efficiency). The objective of this study was to quantify all these factors to determine the net effect of several bioenergy cropping systems on greenhouse-gas (GHG) emissions. We used the DAYCENT biogeochemistry model to assess soil GHG fluxes and biomass yields for corn, soybean, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in Pennsylvania, USA. DAYCENT results were combined with estimates of fossil fuels used to provide farm inputs and operate agricultural machinery and fossil-fuel offsets from biomass yields to calculate net GHG fluxes for each cropping system considered. Displaced fossil fuel was the largest GHG sink, followed by soil carbon sequestration. N20 emissions were the largest GHG source. All cropping systems considered provided net GHG sinks, even when soil C was assumed to reach a new steady state and C sequestration in soil was not counted. Hybrid poplar and switchgrass provided the largest net GHG sinks, >200 g CO2e-C x m(-2) x yr(-1) for biomass conversion to ethanol, and >400 g CO2e-C x m(-2) x yr(-1) for biomass gasification for electricity generation. Compared with the life cycle of gasoline and diesel, ethanol and biodiesel from corn rotations reduced GHG emissions by approximately 40%, reed canarygrass by approximately 85%, and switchgrass and hybrid poplar by approximately 115%.  相似文献   

18.
Species employ diverse strategies to cope with natural disturbance, but the importance of these strategies for maintaining tree species diversity in forests has been debated. Mechanisms that have the potential to promote tree species coexistence in the context of repeated disturbance include life history trade-offs in colonization and competitive ability or in species' ability to survive at low resource conditions and exploit the temporary resource-rich conditions often generated in the wake of disturbance (successional niche). Quantifying these trade-offs requires long-term forest monitoring and modeling. We developed a hierarchical Bayes model to investigate the strategies tree species employ to withstand and recover from hurricane disturbance and the life history trade-offs that may facilitate species coexistence in forests subject to repeated hurricane disturbance. Unlike previous approaches, our model accommodates temporal variation in process error and observations from multiple sources. We parameterized the model using growth and mortality data from four censuses of a 16-ha plot taken every five years (1990-2005), together with damage data collected after two hurricanes and annual seed production data (1992-2005). Species' susceptibilities to hurricane damage as reflected by changes in diameter growth and fecundity immediately following a storm were weak, highly variable, and unpredictable using traditional life history groupings. The lower crowding conditions (e.g., high light) generated in the wake of storms, however, led to greater gains in growth and fecundity for pioneer and secondary-forest species than for shade-tolerant species, in accordance with expectation of life history. We found moderate trade-offs between survival in high crowding conditions, a metric of competitive ability, and long-distance colonization. We also uncovered a strong trade-off between mean species fecundity in low crowding conditions, a metric of recovery potential, and competitive ability. Trade-offs in competitive and colonization ability, in addition to successional niche processes, are likely to contribute to species persistence in these hurricane-impacted forests. The strategies species employ to cope with hurricane damage depend on the degree to which species rely on sprouting, repair of adult damage, changes in demographic rates in response to enhanced resource availability after storms, or long-distance dispersal as recovery mechanisms.  相似文献   

19.
Terrestrial ecosystems store more carbon (C) than the atmosphere and provide ecosystem services (ES) such as global climate regulation, by sequestering carbon within biomass and soil. Land use land cover (LULC) change is considered a key factor, playing an important role in the dynamic variations of carbon storage. The aim of this paper is to assess the effects that LULC has had on carbon stocks and consequently on climate change regulation in north-western Morocco over 21 years. To achieve this aim, the Integrated Valuation of ES and Trade-offs (InVEST) model is used to assess status and variation in the net amount of carbon stored by the different types of LULC, and the economic value of the carbon sequestered in the remaining stock. The results show that the total carbon stock increased from 4.81TgC in 1996 to 4.98TgC in 2017. Over the 21 years, the LULC changes had the greatest effect on carbon storage - an increase of 6.87% with 0.17TgC of carbon sequestered, since the majority of unused land was changed to forest and cultivated land. Based on the global costs of atmospheric carbon, we estimate the economic value of carbon storage services to be between US$1,800,000 and US$3,570,000 for the whole period, with an average yearly increment of between US$86,000 and US$170,000. The results show that the ecosystem management has had a substantial climate mitigation effect. Also, the possibility of paying for ES could inform policy on the adoption of LULC to support livelihood and management choices.  相似文献   

20.
The Clean Development Mechanism (CDM) allows industrialized countries to comply with the Kyoto Protocol by using carbon offsets from developing countries. There are two puzzles within this carbon market: additionality (the proposed activity would not have occurred in its absence) and co-benefits (the project has other environmental benefits besides climate mitigation). This paper proposes an econometric approach to evaluate the CDM effect on sulfur dioxide emission reductions and assess its additionality indirectly. Our empirical model is applied to China's emissions at the prefecture level. We found that the CDM does not have a statistically significant effect in lowering sulfur dioxide emissions. This result casts doubt on additionality of these CDM activities, that is, they would have happened anyway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号