首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Groups of zebra mussels (Dreissena polymorpha) and asiatic clams (Corbicula fluminea) were exposed to cadmium and zinc with the aim of studying the effect of these metals on the 57Co, 110Ag and 134Cs uptake and depuration by these freshwater bivalves. In the presence of zinc, the 57Co concentration factor for the whole organism of the two species was halved, notably because of a decrease of the uptake parameter. Conversely, Zinc and the Cd + Zn mixture increased the 110mAg uptake process by clams and mussels. The two metals also increased the depuration of this radionuclide in mussels, whereas this phenomenon was only observed in clams exposed to cadmium. In comparison with 57Co and 110mAg, the 134Cs bioconcentration was 5-10 times lower in D. polymorpha and not detected in C. fluminea. This weak contamination by this radionuclide resulted from a lower uptake and a higher depuration parameters.  相似文献   

2.
The selective serotonin reuptake inhibitor (SSRI) class of anti-depressants is among the most widely prescribed groups of pharmaceuticals. Consequently, aquatic ecosystems impacted by municipal wastewater discharges are predicted to receive substantial annual loadings of these compounds. Although SSRIs have been detected in fish tissues, little is known of their uptake and depuration in freshwater fish species. In this study, Japanese medaka (Oryzias latipes) were exposed to fluoxetine at a nominal concentration of 0.64 microg L(-1) for 7d and subsequently allowed to depurate in clean water over a 21d period. Fluoxetine uptake by medaka was observed within the first 5h of exposure and the biologically active metabolite, norfluoxetine, was also detected in medaka tissues during this timeframe. A maximum fluoxetine concentration was measured in medaka by the third day of the uptake phase, yielding an uptake rate constant (k(1)) of 5.9+/-0.5 (d(-1)). During the depuration phase of the experiment, a half life of 9.4+/-1.1d was determined for fluoxetine. Using these data, bioconcentration factor (BCF) values of 74 and 80 were estimated for fluoxetine and a pseudo-BCF (the ratio of the concentration of norfluoxetine in medaka and the aqueous fluoxetine concentration) of 117 was calculated for norfluoxetine. These results indicate longer persistence and greater potential for the bioaccumulation of fluoxetine and norfluoxetine in fish tissues than would be predicted from prior half life estimates derived using mammalian species.  相似文献   

3.
Cyanobacterial blooms tend to be more common in warm and nutrient-enriched waters and are increasing in many aquatic water bodies due to eutrophication. The aim of this work is to study the accumulation and depuration of anatoxin-a by Mytilus galloprovincialis a widespread distributed mussel living in estuarine and coastal waters and recognized worldwide as a bioindicator (e.g. Mussel Watch programs). Research on the distribution and biological effects of anatoxin-a in M. galloprovincialis is important. Nevertheless, the risk of human intoxication due to the consumption of contaminated bivalves should also be considered. A toxic bloom was simulated in an aquarium with 5 x 10(5) cell ml(-1) of Anabaena sp. (ANA 37), an anatoxin-a producing strain. Mussels were exposed to Anabaena for 15 days and then 15 days of depuration followed. Three or more animals were sampled every 24h for total toxin quantification and distribution in soft tissues (edible parts). Water samples were also taken every 24h in order to calculate total dissolved and particulate anatoxin-a concentrations. Anatoxin-a was quantified by HPLC with fluorescence detection. No deaths occurred during accumulation and depuration periods. One day after the beginning of depuration, the toxin could not be detected in the animals. Anatoxin-a is distributed in the digestive tract, muscles and foot and is probably actively detoxified.  相似文献   

4.
Hemolymph sodium, potassium and calcium concentrations were determined in crayfish (Orconectes propinquus) exposed to (203)HgCl(2) mixed with food to a concentration of 1 microg Hg g(-1). Dummy-fed animals were exposed to Hg-dosed food wrapped in dialysis tubing to control for mercury reaching the animals via leaching from food to water. Hemolymph analyses were made following 14-day Hg exposures and again after a further 21-day 'depuration' period during which all animals were fed Hg-free food. After 14 days, the mercury reached a concentration of 0.175 microg g(-1) in the hepatopancreas and approximately half this level in the gills of Hg-fed animals. No depuration occurred from the hepatopancreas although the gills lost approximately two-thirds of their labelled mercury during the depuration period. Hemolymph sodium concentrations in Hg-exposed crayfish, both fed and dummy-fed, after 14 days were significantly lower than in Hg-free controls and remained low following the 21-day depuration period. Hemolymph calcium concentrations were lower in Hg-fed animals than in dummy-fed and control animals after 14 days although calcium levels rose in all treatments after 35 days. This may have been due to the incidence of pre-molt animals in all experimental groups, although the relationship between this and mercury exposure was not established unequivocally. Hemolymph potassium levels showed no differences between treatments.  相似文献   

5.
Depuration of copper and zinc by green oysters and blue mussels of Taiwan   总被引:1,自引:0,他引:1  
This paper describes depuration processes of copper and zinc in green oysters (Crassostrea gigas) and in blue mussels (Mytilus smarangdium) collected from an environment with heavy copper contamination, and then transferred to natural clean seawater. Results show that the total loss of copper content per oyster is an exponential function of exposure time for the first 6 days with a depuration rate of 351 microg g(-1) day(-1) and then levels off. During this exponential decrease period approximately 67% of the copper accumulated in green oysters was depurated. However, when the copper contents in the oysters decreased from 2225 +/- 111 microg g(-1) to 344 +/- 18.7 microg g(-1) the depuration rates decreased from 245 microg g(-1) day(-1) to 0.08 microg g(-1) day(-1). This means that green oysters had a 16-fold higher copper depuration rate (351 microg g(-1) day(-1)) than normal oysters (21.5 microg g(-1) day(-1)) for the first 6 days. However, the depuration of accumulated copper and zinc by the mussels was a fast process in natural clean seawater. About 91% of the accumulated copper was lost during the first 6-day period; copper contents declined from 20.2 +/- 3.41 microg g(-1) to 1.80 +/- 0.21 microg g(-1). Only 36% of the accumulated zinc was lost during a depuration period of 6 days. Calculations show that the biological half-lives of copper in green and normal oysters were 11.6 and 25.1 days, respectively. The biological half-lives of zinc in green and normal oysters were 16.7 and 30.1 days, respectively. In spite of the relatively low initial copper content in blue mussels being 20.2 +/- 3.41 microg g(-1), the biological half-life is only 6.40 days. From these results it is important to emphasise that the fastest turnover rate is for copper in blue mussels. However, zinc is more retentive in blue mussels than copper.  相似文献   

6.
Separate 77-d fish feeding studies were conducted on the cyclic volatile methylsiloxane (cVMS) chemicals octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout, Oncorhynchus mykiss, with the determination of biomagnification factor (BMF) and lipid-adjusted BMF (BMF(L)) values as the final experimental metrics. The studies used fish food concentrations of ∼500 μg g−1 for exposure periods of 35 d, followed by a depuration period of 42 d with clean food. The fish tissue concentrations of D4 and D5 achieved empirical steady-state by day 21 in each study. By day 7 of exposure, total 14C activity of both compounds had moved from the fish gastrointestinal (GI) tract into surrounding tissue. An absence of significant fish growth during the initial depuration phase allowed for measurement of empirical depuration rate constants (k2) independent of growth dilution for D4 and D5 of 0.035 and 0.040 d−1, respectively, corresponding to elimination half-lives of approximately 20 d. These rate constants indicated that ∼70–75% of steady-state was achieved during exposure in both studies, resulting in empirical steady-state BMF and BMF(L) values of 0.28 and 0.66 for D4, respectively, and 0.32 and 0.85 for D5, respectively. Kinetic modeling using simple first-order uptake and depuration dynamics produced good agreement with experimental data, with D4 and D5 assimilation efficiencies of 40% and 44%, respectively. Growth-corrected depuration rate constants modeled over the entire study data set indicated slower elimination kinetics for D4 (k2 of 0.007 d−1 or half-life of 100 d) compared to D5 (k2 of 0.010 d−1 or elimination half-life of 69 d). Kinetic BMFk values (i.e., k1/k2) for D4 and D5 were 1.7 and 1.3, respectively, with lipid-adjusted BMFk(L) values of 4.0 and 3.4, respectively.  相似文献   

7.
A kinetic approach was employed to determine the rates of metal uptake (Cd, Cr and Zn) from the dissolved phase and the rate constants of metal depuration in the mussel Perna viridis and the clam Ruditapes philippinarum. The effects of ambient metal concentration, salinity, and body size on the metal influx rate were examined. A linear positive relationship was observed between the metal influx rate and the metal concentration in ambient seawater. There was some evidence that Zn uptake was regulated by the bivalves in response to an increase in ambient Zn concentration. The uptake rate constant was highest for Zn and lowest for Cr in both bivalves, and was higher in mussels than in clams. The metal influx rate decreased by 1.6-1.8 times for the three metals when the salinity was increased from 15 ppt to 30 ppt. However, the effect of salinity on Zn influx in mussels was not statistically significant. A negative relationship of Cd and Zn influx rates with tissue dry weight was also found in both bivalves. Cr uptake in mussels was not significantly correlated with body size, but its uptake in clams was significantly correlated with body size. Metal concentration in ambient seawater appeared to be the most determining factor on metal uptake from the dissolved phase in both bivalves. The efflux rate constants of the three metals were within the range of 0.01-0.03 d-1, and were comparable between the mussels and the clams. Using a simple bioenergetic-based kinetic model, it was shown that both dissolved uptake and food ingestion can contribute to metal accumulation in the bivalves. However, Zn accumulation in the clam R. philippinarum was dominated by uptake from food ingestion. Metal partitioning in ingested food was found to be critical in affecting the relative importance of metal uptake from the dissolved phase and food source, primarily because of the large variability of this parameter in natural environments.  相似文献   

8.
A laboratory study of the cadmium and mercury accumulation and elimination kinetics was conducted on the pelecypod Elliptio complanata (Lightfoot) and the short-lived gastropod Viviparus georgianus (Lea), according to age-classes. Preliminary results (metal concentration vs time of exposure) have demonstrated that uptake of Cd and Hg, in the two molluscs studied, follow a biphasic pattern, whereby a steady state is reached after approximately 16 days' exposure and then accumulation increases again for the rest of exposure period. The elimination of the two metals is also characterized in a biphasic way: fast excretion for the first four days followed by a slower depuration for the rest of exposure time. A two-compartment bioaccumulation model has been used to described the different kinetic parameters: (1) the rate constant for depuration; (2) the rate constant for uptake; (3) the theoretical bioconcentration factor extrapolated to steady-state conditions; and (4) the biological half-life of the metals.  相似文献   

9.
In toxicokinetics studies, interactions between chemicals in mixtures has been largely neglected. This study examines a mixture of perchlorate and arsenate because (1) they have the potential to co-occur in contaminated aquatic habitats, and (2) a previous study by the authors found possible toxicological interactive effects. In the present study, zebrafish (Danio rerio) were exposed to two concentrations of sodium perchlorate (10 and 100 mg l(-1)), sodium arsenate (1 and 10 mg l(-1)), and the mixture-sodium perchlorate+sodium arsenate (10+1 mg l(-1) and 100+10 mg l(-1) Na(2)HAsO(4)-high mixture) for 90 d. Their uptake and accumulation by zebrafish was evaluated at 10, 30, 60, and 90 d. In addition, depuration was examined at 1, 3, and 5d after cessation of the exposure. The uptake of either chemical was concentration-dependent, with significantly higher uptake at high concentrations at either exposure interval. In contrast, there was no significant difference in whole body residue between single chemicals and the corresponding mixture except for 100 mg l(-1) sodium arsenate at 90 d. However, there was increasing accumulation over time at the high concentration of either chemical alone and their mixture, and this increasing trend was more pronounced in the single chemical exposures than in the mixture. At the concentrations tested in the current study, both chemicals reduced the uptake but enhanced the depuration of the other chemical from the zebrafish. This study represents the first examination of the interaction of two anions-perchlorate and arsenate with respect to toxicokinetics.  相似文献   

10.
Contaminated mullet (Mugil cephalus) from Douro estuary was allowed to depurate in clean water and fed with uncontaminated food. Levels of PCBs and DDTs in muscle and liver, and ethoxyresorufin O-deethylase (EROD) activity were measured at day 0, 21, 120 and 270. In specimens captured in the estuary total PCB and total DDT concentrations were 311 and 65 ng g(-1) in muscle and 686 and 115 ng g(-1) in liver, respectively. At day 21, after an initial 10-15 days period of starvation, organochlorines levels increased in both analyzed tissues. Thereafter levels of all PCB congeners and DDT compounds decreased in muscle, and at the end of the 270 days were 49 ng g(-1) and 13 ng g(-1), respectively. These decreases were correlated to the lipids consumption. In liver no relationship between those variables was observed, suggesting different elimination processes and eventual exchange of contaminants between muscle and liver. EROD activities decreased in the first days of depuration experiment, but showed no relations with analysed organochlorines.  相似文献   

11.
Accumulation of free microcystins (MCs) in freshwater gastropods has been demonstrated but accumulation of MCs covalently bound to tissues has never been considered so far. Here, we follow the accumulation of total (free and bound) MCs in Lymnaea stagnalis exposed to i) dissolved MC-LR (33 and 100 μg L−1) and ii) Planktothrix agardhii suspensions producing 5 and 33 μg MC-LR equivalents L−1 over a 5-week period, and after a 3-week depuration period. Snails exposed to dissolved MC-LR accumulated up to 0.26 μg total MCs g−1 dry weight (DW), with no detection of bound MCs. Snails exposed to MCs producing P. agardhii accumulated up to 69.9 μg total MCs g−1 DW, of which from 17.7 to 66.7% were bound. After depuration, up to 15.3 μg g−1 DW of bound MCs were detected in snails previously exposed to toxic cyanobacteria, representing a potential source of MCs transfer through the food web.  相似文献   

12.
Two populations of the garden snail Helix aspersa, from an urban car park and from a semi-rural site, were fed a diet containing 500 microg g(-1) of Pb as PbSO(4). After 2 days, half of each population was removed to a Pb-free diet and half continued on the dosed food, both for 64 days. The snails from the contaminated site had a significantly lower uptake of Pb compared with those from the rural, uncontaminated site. The car park snails also lost Pb more rapidly from their tissues. A second experiment evaluated the effect of a previous exposure to a high Pb diet on Pb uptake. The results suggest that the differences between the two populations are not due to a physiological adaptation, but rather that the car park snails represent an ecotype adapted to a high Pb diet.  相似文献   

13.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

14.
We studied Cd accumulation in Cepaea nemoralis snails at low, but field-relevant Cd concentrations in the diet (Urtica dioica leaves). Six treatments of U. dioica plants were grown, resulting in leaf Cd concentrations between 0 and 2.6 microg g(-1) dw. Seven snails per treatment were fed for 38 days. Leaf Cd concentrations did not affect food consumption rates, and consequently Cd intake rates increased with increasing leaf concentrations. No differences were detected among treatments in the final soft tissue Cd concentrations and body burdens in the snails. Regression analyses showed no positive relationship between either snail Cd concentrations or body burdens and total Cd intake. This suggests a regulation of internal Cd concentrations at low food Cd concentrations. Our data suggest that Cd excretion via the mucus plays a substantial role in this regulation, in addition to Cd excretion via the faeces. Snail shells were no sinks for Cd.  相似文献   

15.
The objective of this study was to investigate bioaccumulation of nickel (Ni) and vanadium (V) in clams living in different salinity regimes along the Saudi coast of the Arabian Gulf. Several hundred clam (Meretrix meretrix), sediment, and seawater samples were collected from 12 locations. Concentrations of Ni and V were determined in these samples using an inductively coupled argon plasma analyzer. Concentrations of Ni and V in the clams varied between 0.35 and 2.61 mg kg(-1) and between 0.13 and 0.35 mg kg(-1) wet tissue, respectively. Analysis of variance of the data revealed significant (P<0.01) inter- and intra-station variations in Ni concentrations in clams. In contrast, the mean concentration of V in clams from all the stations were statistically similar. Correlation between the biometric characteristics of clams and Ni and V concentrations were not statistically significant. Significant (P<0.05) geographical variations in Ni and V concentrations in the sediment samples were found, with relatively higher concentrations in the northern part of the Gulf where there are many oil fields. Ni and V in the sediments were significantly (P<0.05) correlated, suggesting a common contamination source for these elements. Interactions between Ni and V in clams and sediment were poor.  相似文献   

16.
Pain S  Parant M 《Chemosphere》2007,67(6):1258-1263
The biological defence mechanism called MXR or MXD for multixenobiotic resistance or defence protects cells against the entry and the accumulation of xenobiotics. As the defence is modulated by man made chemicals, MXR is used as a biomarker of organisms' exposure to environmental contamination. However, to reliably assess and evidence MXR induction, the use of a reference level is required. In this context, we focused on MXR background level in a freshwater bivalve, the zebra mussel Dreissena polymorpha, in order to propose its use as a reference during MXR evaluation. We monitored the MXR transport activity in mussels collected either in a natural population or in a caged population and then transplanted to clean water in the laboratory. The results showed that MXR activity was decreased to its baseline level after an eight to nine day depuration period (13.1+/-3.1; 7+/-2.6; 13.7+/-3.9 pmol RB min(-1)org(-1) after three experiments of laboratory depurations). Moreover, significant MXR induction was measured in depurated zebra mussels exposed to contaminated sites (39.6+/-3.7; 59.2+/-20.3 pmol RB min(-1)org(-1) after two experiments of field exposure), showing that the laboratory depuration did not affect the induction potential. The MXR responses (decrease as well as increase) occurred in few days and were highly significant, highlighting its reactivity in zebra mussels. Finally, this paper confirms the usefulness of MXR as a tool in biomonitoring studies and provides a protocol for field experiments that enables to establish and use the background level of MXR activity as a reference.  相似文献   

17.
A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 microg g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 microg g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 microg g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood>liver>muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters.  相似文献   

18.
Endosulfan is an insecticide which has been widely used in agriculture. The technical grade material consists of two isomers (alpha and beta). Under natural environmental conditions, endosulfan is metabolized through oxidation and the main metabolite in the environment is endosulfan sulfate. Most ecotoxicology research has been conducted with technical grade endosulfan to determine effects on non-target aquatic organisms. Little data on the effects of endosulfan sulfate on aquatic organisms are available in the literature. This study characterizes endosulfan sulfate bioconcentration and depuration in mosquito fish (Gambusia affinis). During the study, G. affinis was exposed to an environmentally relevant endosulfan sulfate concentration of 0.25 μg L−1 for 5 weeks (uptake phase) followed by a 3-week period (depuration phase) in clean water. This study found that G. affinis bioconcentrated endosulfan sulfate. During the exposure phase, fish tissue concentrations of endosulfan sulfate increased with time up to 730 μg kg−1 dw or 215 μg kg−1 ww. The bioconcentration data followed Michaelis-Menten kinetics better than the one-compartment first order kinetics (1-CFOK). Using these models, the bioconcentration factors for endosulfan sulfate-exposed G. affinis were from 687 to 888  L kg−1 in wet weight or 2263 to 2936 L kg−1 in dry weight. During the depuration phase, endosulfan sulfate concentrations in tissue significantly decreased and the data followed first order kinetics. The half-life of endosulfan sulfate in G. affinis was about 9 d. There was no significant difference in standard length or weight between control and exposed fish. The growth data followed the von Bertalanffy growth model. However, the condition factor of exposed fish increased with time during the exposure phase.  相似文献   

19.
Pharmaceutical products and their metabolites are being widely detected in aquatic environments and there is a growing interest in assessing potential risks of these substances to fish and other non-target species. Ibuprofen is one of the most commonly used analgesic drugs and no peer-reviewed laboratory studies have evaluated the tissue specific bioconcentration of ibuprofen in fish. In the current study, fathead minnow (Pimephales promelas) were exposed to 250 μg L−1 ibuprofen for 28 d followed by a 14 d depuration phase. In a minimized bioconcentration test design, channel catfish (Ictalurus punctatus) were exposed to 250 μg L−1 for a week and allowed to depurate for 7 d. Tissues were collected during uptake and depuration phases of each test and the corresponding proportional and kinetic bioconcentration factors (BCFs) were estimated. The results indicated that the BCF levels were very low (0.08-1.4) implying the lack of bioconcentration potential for ibuprofen in the two species. The highest accumulation of ibuprofen was observed in the catfish plasma as opposed to individual tissues. The minimized test design yielded similar bioconcentration results as those of the standard test and has potential for its use in screening approaches for pharmaceuticals and other classes of chemicals.  相似文献   

20.
Levels of cytochrome P450 enzymes were measured in pyloric caeca microsomes of the asteroid Coscinasterias muricata following exposure to sediment with nominal concentrations of 0, 0.1 or 2 ml crude oil kg(-1) (dry weight) and subsequent depuration. No significant differences were observed in total cytochrome P450 levels or cytochrome P418 levels following the exposure period. However after five days of depuration, levels of total P450 in the pyloric caeca of C. muricata exposed to the highest oiled sediment concentration were significantly lower than in specimens exposed to the other treatments. Cytochrome P418 levels were inversely related to total P450 levels following exposure and subsequent depuration. Preliminary results show that levels of CYP1A-like immunopositive protein (CYP1A-like IPP) in exposed asteroids exhibited a concentration response relationship following the exposure period. Variations in CYP1A-like IPP levels observed during the depuration period may be influenced by the sublethal toxicity of hydrocarbons within the crude oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号