首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples.

In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 °C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer, Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4?×?6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons.

Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal.  相似文献   

2.
To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector.

According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NOx, and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user.

Implications: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).  相似文献   

3.
Abstract

Activated carbons are well-known porous materials as an effective adsorbent used for the removal of emerging contaminants, such as herbicides, which are increasingly present in water bodies. Most water treatment plants, specially in Brazil, are unable to completely remove such contaminants by the conventional process and advanced treatment using activated carbons is required. The aim of this paper was to verify the influence of the activated carbons granulometry and specific surface area on the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide removal efficiency using distilled-deionized water and filtered water collected from a conventional Water Treatment Plant. Commercial activated carbons samples used in this work were obtained from two different manufacturers. Activated carbons were analyzed by the specific surface area, pore size and volume distribution, nuclear magnetic resonance, infrared and x-ray spectroscopy, moisture, volatile matter and ash contents. Batch adsorption isotherms experiments were used and performed by Langmuir and Freundlich models. Granular and powdered activated carbons removed over 99% of 2,4-D in distilled water and near to 99% using filtered water. The activated carbons evaluated in this work presented high performance and played a key role in water treatment by removing 2,4-D herbicide, ensuring the protection of human health and the ecosystem.  相似文献   

4.
生物基质活性炭对挥发性有机物的吸附   总被引:5,自引:0,他引:5  
以咖啡渣和柚子皮生物基质为原料用磷酸活化法制成活性炭,探讨了制备条件对活性炭制备的影响,并研究了其对正丁烷的吸附行为。磷酸活化过程中磷酸的用量为生物基质质量的1.5倍为宜,咖啡渣采用超声干燥法,柚子皮采用水热法制备。制备的活性炭对正丁烷均有较好的吸附能力,以柚子皮为原料、磷酸用量为原料质量两倍活化制成的活性炭吸附性能最佳,最大吸附量约为商用活性炭的2倍。吸附剂均能较好地与兰格缪尔曲线相拟合,计算了不同正丁烷覆盖度下的等量吸附热,其变化规律与吸附曲线变化规律相一致。  相似文献   

5.
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of its Brunauer–Emmett–Teller (BET) surface area. Two simulated flue gas conditions, (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, that is, more than 87%, regardless of their BET surface area.

Implications: We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had mercury adsorption efficiency comparable to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.  相似文献   


6.
This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 degrees C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.  相似文献   

7.
Molecularly imprinted polymer adsorbent has been prepared to remove a group of recalcitrant and acutely hazardous (p-type) chemicals from water and wastewaters. The polymer adsorbent exhibited twofold higher adsorption capacity than the commercially used polystyrene divinylbenzene resin (XAD) and powdered activated carbon adsorbents. Higher adsorption capacity of the polymer adsorbent was explained on the basis of high specific surface area formed during molecular imprinting process. Freundlich isotherms drawn showed that the adsorption of p-type chemicals onto polymer adsorbent was kinetically faster than the other reference adsorbents. Matrix effect on adsorption of p-type chemicals was minimal, and also polymer adsorbent was amenable to regeneration by washing with water/methanol (3:1, v/v) solution. The polymer adsorbent was unaltered in its adsorption capacity up to 10 cycles of adsorption and desorption, which will be more desirable in cost reduction of treatment compared with single-time-use activated carbon.  相似文献   

8.
Prediction of the adsorption capacity for volatile organic compounds (VOCs) onto activated carbons is elucidated in this study. The Dubinin-Radushkevich (D-R) equation was first used to predict the adsorption capacity of nine aromatic and chlorinated VOCs onto two different activated carbons. The two key parameters of the D-R equation were estimated simply from the properties of the VOCs using quantitative structure-activity relationship and from the pore size distribution of the adsorbent. The approach based on the D-R equation predicted well the adsorption capacity at high relative pressures. However, at the relative pressures lower than -1.5 x 10(-3), the D-R approach may significantly overestimate adsorption capacity. To extrapolate the approach to lower relative pressures, the integration of the D-R equation and the Langmuir isotherm, called the D-R-L model, was proposed to predict adsorption capacity over a wide range of relative pressures of VOCs. In this model, the Langmuir isotherm parameters were extracted from the predicted D-R isotherm at high relative pressures. Therefore, no experimental effort was needed to obtain the parameters of the D-R-L model. The model successfully predicted the adsorption capacity of aromatic and chlorinated hydrocarbons tested onto BPL and Sorbonorit B carbons over relative pressures ranging from 7.4 x 10(-5) to 0.03, suggesting that the model is applicable at the low relative pressures of VOCs often observed in many environmental systems. In addition, the molecular size of organic compounds may be an important factor affecting the adsorption capacity of activated carbons. For BPL carbon, an ultramicroporous adsorbent, the limiting pore volume Wo of the D-R equation decreased when the kinetic diameter of the adsorbate was larger than 6 angstroms. However, for Sorbonorit B carbon, no reduction of Wo was found, suggesting that the Wo may be related to the pore size distribution of the adsorbents, as well as to their molecular size. This size exclusion effect may play an important role in predicting the adsorption capacity of VOCs onto microporous adsorbents in the D-R-L model and in the corresponding D-R equation.  相似文献   

9.

Background

In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

Review

This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

Conclusion

Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.  相似文献   

10.
Abstract

This study selected biosolids from a petrochemical waste-water treatment plant as the raw material. The sludge was immersed in 0.5-5 M of zinc chloride (ZnCl2) solutions and pyrolyzed at different temperatures and times. Results indicated that the 1-M ZnCl2-immersed biosolids pyrolyzed at 500 °C for 30 min could be reused and were optimal biosolid adsorbents for benzene adsorption. Pore volume distribution analysis indicated that the mesopore contributed more than the macropore and micropore in the biosolid adsorbent. The benzene adsorption capacity of the biosolid adsorbent was 65 and 55% of the G206 (granular-activated carbon) and BPL (coal-based activated carbon; Calgon, Carbon Corp.) activated carbons, respectively. Data from the adsorption and desorption cycles indicated that the benzene adsorption capacity of the biosolid adsorbent was insignificantly reduced compared with the first-run capacity of the adsorbent; therefore, the biosolid adsorbent could be reused as a commercial adsorbent, although its production cost is high.  相似文献   

11.
褐煤活性炭吸附处理焦化废水   总被引:6,自引:1,他引:5  
研究褐煤活性炭吸附处理焦化废水的性能,为褐煤活性炭用于废水处理提供理论依据和技术指导。以河南某气化厂的焦化废水为吸附原水,进行褐煤活性炭对酚吸附性能的静态和动态实验。静态实验表明,褐煤活性炭对酚的吸附性能符合弗兰德里希(Freundlich)吸附方程式。在室温条件下,对于150 mL焦化废水,当活性炭的用量为10 g,吸附反应时间为1 h,酚的去除率可达92%以上。动态实验研究表明,当进水酚浓度为3 800 mg/L,吸附1.5 h,活性炭的吸附容量可达21.38 mg/g。水处理的实验研究表明,利用褐煤制备的活性炭,对焦化废水具有良好的处理效果。  相似文献   

12.

Purpose

Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-FeII and AC/N-FeIII), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions.

Method

The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors.

Results

Maximum removals of phosphate are obtained in the pH range of 3.78?C6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-FeII and AC/N-FeIII is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon.

Conclusions

Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-FeII has a higher phosphate removal capacity than AC/N-FeIII, which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol?1 for AC/N-FeII and AC/N-FeIII, respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.  相似文献   

13.
褐煤对废水中酸性红B的吸附去除   总被引:1,自引:0,他引:1  
选用褐煤作为廉价吸附剂,脱除模拟废水中染料酸性红B。研究了褐煤对废水中酸性红B的吸附动力学、等温吸附模式,考察了pH、褐煤投加量以及离子强度(NaCl)对吸附效果的影响。结果表明,吸附动力学较好地符合准二级速率方程(R2=1.000),并且以化学吸附为主;吸附等温式满足Langmuir方程(R2=0.986),最大单分子层吸附量为42 mg/g;废水中染料的去除率随溶液pH的减小而明显增加,在pH=1时,去除效果最好,证实吸附过程存在静电吸引及化学键合;在一定条件下,溶液中酸性红B的去除率随褐煤投加量增加而增加;吸附效果随溶液中离子强度(NaCl)的增加而增强。说明褐煤可以作为一种廉价吸附材料,用于处理含染料废水。  相似文献   

14.
This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L?1 and 12.0 g L?1, respectively. Under these optimal conditions, the removal efficiencies reached 90.23 % and 92.13 % for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.  相似文献   

15.
CuO-CeO_2/AC吸附燃煤烟气中元素汞的实验研究   总被引:2,自引:0,他引:2  
通过活性炭负载CuO和CeO2来制备吸附剂,采用固定床吸附方式,在不同反应条件下对吸附剂的吸附性能进行测试,筛选出去除效率最好的吸附剂,并通过BET和XRD对吸附剂的理化性质进行分析。结果表明,CuO和CeO2的加入大大改变了原活性炭的比表面积和孔结构,改善了活性炭的吸附性能。CuO-CeO2/AC中CuO和CeO2质量比不同,对汞的去除效率也不同,在1∶2时去除效率最好;CuO-CeO2/AC中所负载的CuO和CeO的总量为5%时,能大大促进汞的吸附效率,增长有效吸附时间;CuO-CeO2/AC对汞的吸附性能随反应温度的增加呈先增加后减小的趋势,在80℃时达到最大值。  相似文献   

16.
An activated carbon commercially available named HGR, produced by Calgon-Carbon Group, was used to adsorbe metallic mercury. The work is part of a wider research activity by the same group focused on the removal of metallic and divalent mercury from combustion flue gas. With respect to previously published papers, this one is aimed at studying in depth thermodynamic equilibria of metallic mercury adsorption onto a commercial activated carbon. The innovativeness lies in the wider operative conditions explored (temperature and mercury concentrations) and in the evaluation of kinetic and thermodynamic data for a commercially available adsorbing material. In detail, experimental runs were carried out on a laboratory-scale plant, in which Hg° vapors were supplied in a nitrogen gas stream at different temperature and mercury concentration. The gas phase was flowed through a fixed bed of adsorbent material. Adsorbate loading curves for different Hg° concentrations together with adsorption isotherms were achieved as a function of temperature (120, 150, 200°C) and Hg° concentrations (1.0?7.0 mg/m3). Experimental runs demonstrated satisfying results of the adsorption process, while Langmuir parameters were evaluated with gas–solid equilibrium data. Especially, they confirmed that adsorption capacity is a favored process in case of lower temperature and they showed that the adsorption heat was –20 kJ/mol. Furthermore, a numerical integration of differential equations that model the adsorption process was proposed. Scanning electron microscopy (SEM) investigation was an useful tool to investigate about fresh and saturated carbon areas. The comparison between them allowed identification of surface sites where mercury is adsorbed; these spots correspond to carbon areas where sulfur concentration is greater.

Implications: Mercury compounds can cause severe harm to human health and to the ecosystem. There are a lot of sources that emit mercury species to the atmosphere; the main ones are exhaust gases from coal combustion and municipal solid waste incineration. Furthermore, certain CO2 capture processes, particularly oxyfuel combustion in a pulverized fuel coal-fired power station, produce a raw CO2 product containing several contaminants, mainly water vapor, oxygen, and nitrogen but also mercury, that have to be almost completely removed; otherwise these would represent a strong drawback to the success of the process.  相似文献   

17.
通过活性炭负载CuO和CeO2来制备吸附剂,采用固定床吸附方式,在不同反应条件下对吸附剂的吸附性能进行测试,筛选出去除效率最好的吸附剂,并通过BET和XRD对吸附剂的理化性质进行分析。结果表明,CuO和CeO2的加入大大改变了原活性炭的比表面积和孔结构,改善了活性炭的吸附性能。CuO-CeO2/AC中CuO和CeO2质量比不同,对汞的去除效率也不同,在1∶2时去除效率最好;CuO-CeO2/AC中所负载的CuO和CeO的总量为5%时,能大大促进汞的吸附效率,增长有效吸附时间;CuO-CeO2/AC对汞的吸附性能随反应温度的增加呈先增加后减小的趋势,在80℃时达到最大值。  相似文献   

18.
Utilization of agrowaste materials for the production of activated carbon, as an excellent adsorbent with large surface area, is well established industrially, for dephenolation of wastewater. In the present work, dried pods of Prosopis cineraria—a novel and low-cost agrowaste material—were used to prepare activated carbons by zinc chloride activation. Batch adsorption experiments were carried out to study the effects of various physicochemical parameters such as initial phenol concentration, adsorbent dose, initial solution pH, and temperature. Pseudo-first-order second-order and diffusion kinetic models were used to identify the possible mechanisms of such adsorption process. The Langmuir and Freundlich equations were used to analyze the adsorption equilibrium. Maximum removal efficiency of 86 % was obtained with 25 mg?L?1 of initial phenol concentration. The favorable pH for maximum phenol adsorption was 4.0. Freundlich equation represented the adsorption equilibrium data more ideally than the Langmuir. The maximum adsorption capacity obtained was 78.32 mg?g?1 at a temperature of 30 °C and 25 mg?L?1 initial phenol concentration. The adsorption was spontaneous and endothermic. The pseudo-second-order model, an indication of chemisorption mechanism, fitted the experimental data better than the pseudo-first-order Lagergren model. Regeneration of spent activated carbon was carried out using Pseudomonas putida MTCC 2252 as the phenol-degrading microorganism. Maximum regeneration up to 57.5 % was recorded, when loaded phenol concentration was 25 mg?L?1. The data obtained in this study would be useful in designing and fabricating an efficient treatment plant for phenol-rich effluents.  相似文献   

19.
磷酸微波活化多孔生物质炭对亚甲基蓝的吸附特性   总被引:1,自引:0,他引:1  
以甘蔗渣为原料,采用微波辅助H3PO4活化法制备富含含氧酸官能团的中孔生物质炭。通过扫描电子显微镜SEM、傅立叶变换红外光谱FT-IR等技术对生物质炭物理化学性质进行表征,并通过静态实验法,探讨炭样对亚甲基蓝的吸附行为及热力学性质。结果表明,H3PO4活化制备蔗渣生物质炭的适宜条件为浸渍比1:1,烘干时间10h,活化功率900W,活化时间22min,在此条件下制得的生物质炭得率为39.2%,碘值为817mg/g,亚甲基蓝值为229mg/g,为国家一级品标准的1.7倍。红外光谱分析表明,炭样表面以羟基、羰基、羧基等酸性官能团为主。静态吸附实验表明,Freundlich方程与Redlich—Peterson方程能较好地描述等温吸附行为,表现为优惠吸附。热力学研究表明,吸附吉布斯自由能(△G0)〈0,说明吸附反应是自发过程,而吸附标准焓变(△H0)〉70KJ/mol,表明亚甲基蓝在制备炭样上的吸附是吸热反应,升温有利于吸附,且化学反应在吸附过程中发挥了重要作用。  相似文献   

20.
Low-cost water defluoridation technique is one of the most important issues throughout the world. In the present study, shale, a coal mine waste, is employed as novel and low-cost adsorbent to abate fluoride from simulated solution. Shale samples were collected from Mahabir colliery (MBS) and Sonepur Bazari colliery (SBS) of Raniganj coalfield in West Bengal, India, and used to remove fluoride. To increase the adsorption efficiency, shale samples were heat activated at a higher temperature and samples obtained at 550 °C are denoted as heat-activated Mahabir colliery shale (HAMBS550) and heat-activated Sonepur Bazari colliery shale (HASBS550), respectively. To prove the fluoride adsorption onto different shale samples and ascertain its mechanism, natural shale samples, heat-activated shale samples, and their fluoride-loaded forms were characterized using scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction study, and Fourier transform infrared spectroscopy. The effect of different parameters such as pH, adsorbent dose, size of particles, and initial concentration of fluoride was investigated during fluoride removal in a batch contactor. Lower pH shows better adsorption in batch study, but it is acidic in nature and not suitable for direct consumption. However, increase of pH of the solution from 3.2 to 6.8 and 7.2 during fluoride removal process with HAMBS550 and HASBS550, respectively, confirms the applicability of the treated water for domestic purposes. HAMBS550 and HASBS550 show maximum removal of 88.3 and 88.5 %, respectively, at initial fluoride concentration of 10 mg/L, pH 3, and adsorbent dose of 70 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号