首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Many explorations of extinction probability have had a global focus, yet it is unclear whether variables that explain the probability of extinction at large spatial extents are the same as those at small spatial extents. Thus, we used nearly annual presence-absence records for the most recent 40 years of a 110-year data set from Palenque, Mexico, an area with ongoing deforestation, to explore which of >200 species of birds have probabilities of extirpation that are likely to increase. We assessed associations between long-term trends in species presence (i.e., detection in a given year) and body size, geographic range size, diet, dependence on forest cover, taxonomy, and ecological specialization. Our response variable was the estimated slope of a weighted logistic regression for each species. We assessed the relative strength of each predictor by means of a model ranking scheme. Several variables associated with high extinction probability at global extents, such as large body size or small geographic range size, were not associated with occurrence of birds over time at our site. Body size was associated with species loss at Palenque, but occurrence trends of both very large and very small species, particularly the latter, have declined, or the species have been extirpated. We found no association between declining occurrence trend and geographic range size, yet decline correlated with whether a species depends on forest (mean occupancy trend =-0.0380, 0.0263, and 0.0186 for, respectively, species with high, intermediate, or low dependence on forest) and with complex combinations of diet and foraging strata (e.g., occurrence of canopy insectivores and terrestrial omnivores has increased, whereas occurrence of mid-level frugivores and terrestrial granivores has decreased). Our findings emphasize that analyses of local areas are necessary to explicate extirpation risk at various spatial extents.  相似文献   

2.
Olden JD  Poff NL  Bestgen KR 《Ecology》2008,89(3):847-856
Understanding the causes and consequences of species extinctions is a central goal in ecology. Faced with the difficult task of identifying those species with the greatest need for conservation, ecologists have turned to using predictive suites of ecological and life-history traits to provide reasonable estimates of species extinction risk. Previous studies have linked individual traits to extinction risk, yet the nonadditive contribution of multiple traits to the entire extinction process, from species rarity to local extirpation to global extinction, has not been examined. This study asks whether trait synergisms predispose native fishes of the Lower Colorado River Basin (USA) to risk of extinction through their effects on rarity and local extirpation and their vulnerability to different sources of threat. Fish species with "slow" life histories (e.g., large body size, long life, and delayed maturity), minimal parental care to offspring, and specialized feeding behaviors are associated with smaller geographic distribution, greater frequency of local extirpation, and higher perceived extinction risk than that expected by simple additive effects of traits in combination. This supports the notion that trait synergisms increase the susceptibility of native fishes to multiple stages of the extinction process, thus making them prone to the multiple jeopardies resulting from a combination of fewer individuals, narrow environmental tolerances, and long recovery times following environmental change. Given that particular traits, some acting in concert, may differentially predispose native fishes to rarity, extirpation, and extinction, we suggest that management efforts in the Lower Colorado River Basin should be congruent with the life-history requirements of multiple species over large spatial and temporal scales.  相似文献   

3.
Abstract: Informally gathered species lists are a potential source of data for conservation biology, but most remain unused because of questions of reliability and statistical issues. We applied two alternative analytical methods (contingency tests and occupancy modeling) to a 35‐year data set (1973–2007) to test hypotheses about local bird extinction. We compiled data from bird lists collected by expert amateurs and professional scientists in a 2‐km2 fragment of lowland tropical forest in coastal Ecuador. We tested the effects of the following on local extinction: trophic level, sociality, foraging specialization, light tolerance, geographical range area, and biogeographic source. First we assessed extinction on the basis of the number of years in which a species was not detected on the site and used contingency tests with each factor to compare the frequency of expected and observed extinction events among different species categories. Then we defined four multiyear periods that reflected different stages of deforestation and isolation of the study site and used occupancy modeling to test extinction hypotheses singly and in combination. Both types of analyses supported the biogeographic source hypothesis and the species‐range hypothesis as causes of extinction; however, occupancy modeling indicated the model incorporating all factors except foraging specialization best fit the data.  相似文献   

4.
Species persistence in human‐altered landscapes can depend on factors operating at multiple spatial scales. To understand anthropogenic impacts on biodiversity, it is useful to examine relationships between species traits and their responses to land‐use change. A key knowledge gap concerns whether these relationships vary depending on the scale of response under consideration. We examined how local‐ and large‐scale habitat variables influence the occupancy dynamics of a bird community in cloud forest zones in the Colombian Chocó‐Andes. Using data collected across a continuum of forest and agriculture, we examined which traits best predict species responses to local variation in farmland and which traits best predict species responses to isolation from contiguous forest. Global range size was a strong predictor of species responses to agriculture at both scales; widespread species were less likely to decline as local habitat cover decreased and as distance from forest increased. Habitat specialization was a strong predictor of species responses only at the local scale. Open‐habitat species were particularly likely to increase as pasture increased, but they were relatively insensitive to variation in distance to forest. Foraging plasticity and flocking behavior were strong predictors of species responses to distance from forest, but not their responses to local habitat. Species with lower plasticity in foraging behaviors and obligate flock‐following species were more likely to decline as distance from contiguous forest increased. For species exhibiting these latter traits, persistence in tropical landscapes may depend on the protection of larger contiguous blocks of forest, rather than the integration of smaller‐scale woodland areas within farmland. Species listed as threatened or near threatened on the International Union for Conservation of Nature Red List were also more likely to decline in response to both local habitat quality and isolation from forest relative to least‐concern species, underlining the importance of contiguous forests for threatened taxa.  相似文献   

5.
The degree of interdependence and potential for shared coevolutionary history of frugivorous animals and fleshy-fruited plants are contentious topics. Recently, network analyses revealed that mutualistic relationships between fleshy-fruited plants and frugivores are mostly built upon generalized associations. However, little is known about the determinants of network structure, especially from tropical forests where plants' dependence on animal seed dispersal is particularly high. Here, we present an in-depth analysis of specialization and interaction strength in a plant-frugivore network from a Kenyan rain forest. We recorded fruit removal from 33 plant species in different forest strata (canopy, midstory, understory) and habitats (primary and secondary forest) with a standardized sampling design (3447 interactions in 924 observation hours). We classified the 88 frugivore species into guilds according to dietary specialization (14 obligate, 28 partial, 46 opportunistic frugivores) and forest dependence (50 forest species, 38 visitors). Overall, complementary specialization was similar to that in other plant-frugivore networks. However, the plant-frugivore interactions in the canopy stratum were less specialized than in the mid- and understory, whereas primary and secondary forest did not differ. Plant specialization on frugivores decreased with plant height, and obligate and partial frugivores were less specialized than opportunistic frugivores. The overall impact of a frugivore increased with the number of visits and the specialization on specific plants. Moreover, interaction strength of frugivores differed among forest strata. Obligate frugivores foraged in the canopy where fruit resources were abundant, whereas partial and opportunistic frugivores were more common on mid- and understory plants, respectively. We conclude that the vertical stratification of the frugivore community into obligate and opportunistic feeding guilds structures this plant-frugivore network. The canopy stratum comprises stronger links and generalized associations, whereas the lower strata are composed of weaker links and more specialized interactions. Our results suggest that seed-dispersal relationships of plants in lower forest strata are more prone to disruption than those of canopy trees.  相似文献   

6.
Understanding the ecology of extinction is one of the primary challenges facing ecologists in the 21st century. Much of our current understanding of extinction, particularly for invertebrates, comes from studies with large geographic coverage but less temporal resolution, such as comparisons between historical collection records and contemporary surveys for geographic regions or political entities. We present a complementary approach involving a data set that is geographically restricted but temporally intensive: we focus on three sites in the Central Valley of California, and utilize 35 years of biweekly (every two weeks) surveys at our most long-sampled site. Previous analyses of these data revealed declines in richness over recent decades. Here, we take a more detailed approach to investigate the mode of decline for this fauna. We ask if all species are in decline, or only a subset. We also investigate traits commonly found to be predictors of extinction risk in other studies, such as body size, diet breadth, habitat association, and geographic range. We find that population declines are ubiquitous: the majority of species at our three focal sites (but not at a nearby site at higher elevation) are characterized by reductions in the fraction of days that they are observed per year. These declines are not readily predicted by ecological traits, with the possible exception of ruderal/non-ruderal status. Ruderal species, in slightly less precipitous decline than non-ruderal taxa, are more dispersive and more likely to be associated with disturbed habitats and exotic hosts. We conclude that population declines and extirpation, particularly in regions severely and recently impacted by anthropogenic alteration, might not be as predictable as has been suggested by other studies on the ecology of extinction.  相似文献   

7.
Conservation efforts are often motivated by the threat of global extinction. Yet if conservationists had more information suggesting that extirpation of individual species could lead to undesirable ecological effects, they might more frequently attempt to protect or restore such species across their ranges even if they were not globally endangered. Scientists have seldom measured or quantitatively predicted the functional consequences of species loss, even for large, extinction‐prone species that theory suggests should be functionally unique. We measured the contribution of Asian elephants (Elephas maximus) to the dispersal of 3 large‐fruited species in a disturbed tropical moist forest and predicted the extent to which alternative dispersers could compensate for elephants in their absence. We created an empirical probability model with data on frugivory and seed dispersal from Buxa Tiger Reserve, India. These data were used to estimate the proportion of seeds consumed by elephants and other frugivores that survive handling and density‐dependent processes (Janzen‐Connell effects and conspecific intradung competition) and germinate. Without compensation, the number of seeds dispersed and surviving density‐dependent effects decreased 26% (Artocarpus chaplasha), 42% (Careya arborea), and 72% (Dillenia indica) when elephants were absent from the ecosystem. Compensatory fruit removal by other animals substantially ameliorated these losses. For instance, reductions in successful dispersal of D. indica were as low as 23% when gaur (Bos gaurus) persisted, but median dispersal distance still declined from 30% (C. arborea) to 90% (A. chaplasha) without elephants. Our results support the theory that the largest animal species in an ecosystem have nonredundant ecological functionality and that their extirpation is likely to lead to the deterioration of ecosystem processes such as seed dispersal. This effect is likely accentuated by the overall defaunation of many tropical systems.  相似文献   

8.
Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species’ distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species’ geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point‐locality data for 125 Galliform species from across the Palearctic and Indo‐Malaya into equal‐area half‐degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human‐dominated landscapes. In Indo‐Malaya, no pattern was found for unconverted landscapes, but in human‐dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species’ ranges and highlight the difficulty of predicting the parts of a species’ distribution most vulnerable to threat.  相似文献   

9.
Abstract: We provide a cross‐taxon and historical analysis of what makes tropical forest species vulnerable to extinction. Several traits have been important for species survival in the recent and distant geological past, including seed dormancy and vegetative growth in plants, small body size in mammals, and vagility in insects. For major past catastrophes, such as the five mass extinction events, large range size and vagility or dispersal were key to species survival. Traits that make some species more vulnerable to extinction are consistent across time scales. Terrestrial organisms, particularly animals, are more extinction prone than marine organisms. Plants that persist through dramatic changes often reproduce vegetatively and possess mechanisms of die back. Synergistic interactions between current anthropogenic threats, such as logging, fire, hunting, pests and diseases, and climate change are frequent. Rising temperatures threaten all organisms, perhaps particularly tropical organisms adapted to small temperature ranges and isolated by distance from suitable future climates. Mutualist species and trophic specialists may also be more threatened because of such range‐shift gaps. Phylogenetically specialized groups may be collectively more prone to extinction than generalists. Characterization of tropical forest species’ vulnerability to anthropogenic change is constrained by complex interactions among threats and by both taxonomic and ecological impediments, including gross undersampling of biotas and poor understanding of the spatial patterns of taxa at all scales.  相似文献   

10.
Abstract: Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate‐driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate‐change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted‐range species not included in our range‐shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted‐range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad‐scale guidance for directing conservation efforts.  相似文献   

11.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

12.
Abstract. There is a dire need to predict the vulnerability of tropical forest biotas to habitat fragmentation I tested the efficacy of seven ecological traits (body size Iongeuity, fecundity, trophic level, dietary specialization, natural abundance in rain forest and abundance in the surrounding habitat matrix) for predicting responses of 16 nonflying mammal species to rain forest fragmentation in tropical QueenslaM Australia An ordination analysis revealed that most (84%) of the variation in traits was described by two axes, the first separating rand K-selected species, and the second discriminating rare species with specialized diets from common species with generalized diets.
Using multiple regression analysis, the two ordination axes explained 51.7% of variation in mammal extinction proneness (F = 9.96 P = 0.009). Howem, univariate tests revealed tbat a single trait abundance in the mawas a betterpredictor of vulnerability (r2= 63.8%, F = 24.69, P < 0.001). Partial correlations demonstrated that once the effects of matrix abundance tuete remove4 no other traits or ordination axes were significant predictors of extinction proneness.
These results highlight the importance of tolerance of modijied habitats in determining survival of nonpying mammals in tropical forest fragments. Species tbat traverse or exploit modaxied habitats tend to remain stable or inmase in fragments whereas those tbat avoid these habitats often disappem The implications of these findings for hopical forest conservation are discussed.  相似文献   

13.
Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to‐and‐fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid‐zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation planning.  相似文献   

14.
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable‐isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic‐niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic‐niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic‐niche widths in degraded forest. Species with narrow trophic‐niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species’ trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. Flexibilidad Trófica y la Persistencia de Aves de Sotobosque en un Bosque Lluvioso Talado Intensivamente  相似文献   

15.
Long-term studies to understand biodiversity changes remain scarce—especially so for tropical mountains. We examined changes from 1911 to 2016 in the bird community of the cloud forest of San Antonio, a mountain ridge in the Colombian Andes. We evaluated the effects of past land-use change and assessed species vulnerability to climate disruption. Forest cover decreased from 95% to 50% by 1959, and 33 forest species were extirpated. From 1959 to 1990, forest cover remained stable, and an additional 15 species were lost—a total of 29% of the forest bird community. Thereafter, forest cover increased by 26% and 17 species recolonized the area. The main cause of extirpations was the loss of connections to adjacent forests. Of the 31 (19%) extirpated birds, 25 have ranges peripheral to San Antonio, mostly in the lowlands. Most still occurred regionally, but broken forest connections limited their recolonization. Other causes of extirpation were hunting, wildlife trade, and water diversion. Bird community changes included a shift from predominantly common species to rare species; forest generalists replaced forest specialists that require old growth, and functional groups, such as large-body frugivores and nectarivores, declined disproportionally. All water-dependent birds were extirpated. Of the remaining 122 forest species, 19 are vulnerable to climate disruption, 10 have declined in abundance, and 4 are threatened. Our results show unequivocal species losses and changes in community structure and abundance at the local scale. We found species were extirpated after habitat loss and fragmentation, but forest recovery stopped extirpations and helped species repopulate. Land-use changes increased species vulnerability to climate change, and we suggest reversing landscape transformation may restore biodiversity and improve resistance to future threats.  相似文献   

16.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

17.
Range Size and Extinction Risk in Forest Birds   总被引:2,自引:0,他引:2  
Abstract:  Small geographical range size is the single best predictor of threat of extinction in terrestrial species. Knowing how small a species' range has to be before authorities consider it threatened with extinction would allow prediction of a species' risk from continued deforestation and warming climates and provide a baseline for conservation and management strategies aspiring to mitigate these threats. To determine the threshold at which forest-dependent bird species become threatened with extinction, we compared the range sizes of threatened and nonthreatened species. In doing so, we present a simple, repeatable, and practical protocol to quantify range size. We started with species' ranges published in field guides or comparable sources. We then trimmed these ranges, that is, we included only those parts of the ranges that met the species' requirements of elevation and types of forest preferred. Finally, we further trimmed the ranges to the amount of forest cover that remains. This protocol generated an estimate of the remaining suitable range for each species. We compared these range estimates with those from the World Conservation Union Red List. We used the smaller of the two estimates to determine the threshold, 11,000 km2, below which birds should be considered threatened. Species considered threatened that have larger ranges than this qualified under other (nonspatial) red list criteria. We identified a suite of species (18) that have not yet qualified as threatened but that have perilously small ranges—about 11% of the nonthreatened birds we analyzed. These birds are likely at risk of extinction and reevaluation of their status is urgently needed.  相似文献   

18.
Abstract: We analyzed the structure and composition of a bird assemblage in a fragmented relict temperate forest located in northcentral Chile ( Fray Jorge National Park). In terms of species composition, the bird assemblage we found in Fray Jorge was more similar to southern temperate forest sites, located more than 1200 km south of Fray Jorge, than to localities found in nearby scrub habitats. The relict character and long-term isolation of the Fray Jorge forest provides a natural experiment with which to establish the potential long-term effects of fragmentation and isolation on southern Chilean temperate forests. Between May 1996 and March 1997, we conducted seasonal surveys of birds in six forest fragments, ranging in size from 0.5 to 22.5 ha, at Fray Jorge. The number of bird species at each forest fragment was positively correlated with fragment area during all seasons. The relict forest system had a steeper species-area slope than that reported for similar temperate-forest bird assemblages in forest fragments within Chiloé Island and for islands across the Chiloé Archipelago in southern Chile. In this regard, this bird fauna resembled a depauperate oceanic archipelago. This difference in area effects is likely a consequence of the minimization of rescue effects because of the absence of large source forest areas nearby and the long-term isolation of the system. In addition, the distribution of species among forest fragments in Fray Jorge was not random, showing a nested subset pattern. Thus, some species occur across all fragments, regardless of their area, and therefore are less affected by habitat fragmentation and less prone to local extinction. These results suggest that, for south-temperate forest birds, large fragments (or reserves) should afford better protection against extinction than small forest patches.  相似文献   

19.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

20.
Abstract: Modern global temperature and land cover and projected future temperatures suggest that tropical forest species will be particularly sensitive to global warming. Given a moderate greenhouse gas emissions scenario, fully 75% of the tropical forests present in 2000 will experience mean annual temperatures in 2100 that are greater than the highest mean annual temperature that supports closed‐canopy forest today. Temperature‐sensitive species might extend their ranges to cool refuges, defined here as areas where temperatures projected for 2100 match 1960s temperatures in the modern range. Distances to such cool refuges are greatest for equatorial species and are particularly large for key tropical forest areas including the Amazon and Congo River Basins, West Africa, and the upper elevations of many tropical mountains. In sum, tropical species are likely to be particularly sensitive to global warming because they are adapted to limited geographic and seasonal variation in temperature, already lived at or near the highest temperatures on Earth before global warming began, and are often isolated from cool refuges. To illustrate these three points, we examined the distributions and habitat associations of all extant mammal species. The distance to the nearest cool refuge exceeded 1000 km for more than 20% of the tropical and less than 4% of the extratropical species with small ranges. The biological impact of global warming is likely to be as severe in the tropics as at temperate and boreal latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号